智能變電站電能質(zhì)量預(yù)警系統(tǒng)研究
柏晶晶
(國網(wǎng)江蘇省電力公司鹽城供電公司,江蘇 鹽城 224002)
摘 要:電能質(zhì)量擾動源會給電能質(zhì)量帶來很大的安全隱患。提出了基于高階統(tǒng)計量的時間序列挖掘算法對異常數(shù)據(jù)進行深入分析,并結(jié)合三層四等級的預(yù)警流程,來實現(xiàn)對電能質(zhì)量穩(wěn)態(tài)指標(biāo)充分預(yù)警。實際運行結(jié)果表明,所開發(fā)的智能變電站電能質(zhì)量預(yù)警系統(tǒng)能夠全面地挖掘潛在的電能質(zhì)量問題,有助于促進變電運維管理水平的提升,為電網(wǎng)安全穩(wěn)定運行提供有力支撐。
關(guān)鍵詞:電能質(zhì)量;預(yù)警;異常挖掘;偏度;峰度
中圖分類號:TM63;TM76 文獻標(biāo)識碼:A 文章編號:1007-3175(2017)10-0017-04
Research on Power Quality Early Warning System for Intelligent Substation
BAI Jing-jing
(Yancheng Power Supply Company, State Grid Jiangsu Electric Power Company, Yancheng 224002, China)
Abstract: The power quality disturbance sources will bring the great potential safety hazard. This paper proposed the time sequence mining algorithm based on higher order statistics to carry out deep analysis of abnormal data and combined the three-layer four hierarchical early warning flow to realize the full early warning of power quality steady state index. The practical operation results show that the developed power quality early warning system in intelligent substation could dig the potential power quality problems roundly, which is helpful to promote the operation and maintenance management level of power transformation and provides the powerful support for the grid safe and stable operation.
Key words: power quality; early warning; anomaly detection; skewness; kurtosis
參考文獻
[1] 徐永海,肖湘寧. 電力市場環(huán)境下的電能質(zhì)量問題[J]. 電網(wǎng)技術(shù),2004,28(22):48-52.
[2] 楊淑英. 電能質(zhì)量監(jiān)測裝置研究[J]. 電力系統(tǒng)及其自動化學(xué)報,2004,16(2):58-62.
[3] 雷剛,顧偉,袁曉冬. 灰色理論在電能質(zhì)量綜合評估中的應(yīng)用[J]. 電力自動化設(shè)備,2009,29(11):62-65.
[4] 李娜娜, 何正友. 組合賦權(quán)法在電能質(zhì)量綜合評估中的應(yīng)用[J]. 電力系統(tǒng)保護與控制,2009,37(16):128-134.
[5] 黃永紅,柏晶晶,陳暉. 基于電流跟蹤的并聯(lián)混合有源濾波器單周控制[J]. 電測與儀表,2013,50(4):54-58.
[6] SALARVAND A, MIRZAEIAN B, MOALLEM M.Obtaining a quantitative index for power quality evaluation in competitive electricity market[J].IET Generation Transmission & Distribution, 2010,4(7):810-823.
[7] AGREZ D. Estimation of the Component Parameters for the Evaluation of the Power Quality Disturbances in the Frequency Domain[C] // Instrumentation and Measurement Technology Conference, 2008:1548-1553.
[8] LIN J, LI Y.Finding structural similarity in time series data using bag-of-patterns representation[C]//International Conference on Scientific and Statistical Database Management, 2009,5566:461-477.
[9] BROOK B W, BRADSHAW C J A. Strength of evidence for density dependence in abundance time series of 1 198 species[J].Ecology, 2006,87(6):1445-1451.
[10] STELLMES M, RODER A, UDELHOVEN T, et al. Mapping syndromes of land change in Spain with remote sensing time series, demographic and climatic data[J].Land Use Policy, 2013,30(1):685-702.
[11] MCDONALD J B, SORENSEN J, TURLEY P A. Skewness and kurtosis properties of income distribution models[J].Review of Income and Wealth, 2013,59(2):360-374.
[12] 柏晶晶,袁曉冬,張帥,等. 基于組合賦權(quán)法的穩(wěn)態(tài)電能質(zhì)量預(yù)警閾值研究[J]. 電測與儀表,2014,51(12):70-74.