<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號: CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁 >> 文章檢索 >> 文章瀏覽排名

    兼顧供電量組分特性的最優GM(1,N )季度電量預測方法

    來源:電工電氣發布時間:2018-01-22 12:22 瀏覽次數:770
    兼顧供電量組分特性的最優GM(1,N )季度電量預測方法
     
    李京平1,陳丹伶2,曾繁華1,王鑫2,方嵩1
    (1 廣東電網有限責任公司中山供電局,廣東 中山 528400;2 廣州市奔流電力科技有限公司,廣東 廣州 510640)
     
        摘 要:提出考慮供電量組分多層級劃分及外部因素影響,利用關聯度尋優方法構造最優GM(1,N )電量預測模型。根據供電地區的行業用電分類,對總供電量的組分進行分層級劃分和重要性分析;計算各重要組分及外部影響因素與供電量的關聯度,并依據關聯度大小對各影響因素進行排序,再通過建立不同N下的GM(1,N ) 模型,根據預測精度確定最優GM(1,N ) 模型。采用該模型對廣東電網中山供電局的供電量數據進行預測分析,證明了該模型的預測結果具有較高的準確性。
        關鍵詞:季度電量預測;GM(1,N ) 模型;行業用電分類;外部影響因素
        中圖分類號:TM715     文獻標識碼:A     文章編號:1007-3175(2018)01-0027-05
     
    Optimal GM (1, N) Quarter Electric Quantity Forecasting Method Considering Characteristics of Power Supply Components
     
    LI Jing-ping1, CHEN Dan-ling2, ZENG Fan-hua1, WANG Xin2, FANG Song1
    (1 Zhongshan Power Supply Bureau, Guangdong Power Grid Co., Ltd, Zhongshan 528400, China;
    2 Guangzhou Power Electrical Engineering Technology Co., Ltd, Guangzhou 510640, China)
     
        Abstract: This paper proposed to use the correlation optimization method to construct the optimal GM (1, N) electric quantity prediction model considering the power supply components multilevel division and external influencing factors. According to the industry power utilization classification of power supply area, this paper carried out the power supply components multilevel division, analyzed the importance of the power supply components and calculated the correlation between each important component, together with external influencing factors and the power supply components. Each influencing factor was sorted based on the correlation and the GM (1, N) model of different N was established to determine the optimal one according to the prediction accuracy. The actual power supply data of Zhongshan power supply bureau of Guangdong power grid verifies the high accuracy of this model’s forecasting algorithm.
        Key words: quarter power supply forecasting; GM (1, N) model; industry power utilization classification; external influencing factor
     
    參考文獻
    [1] PESSANHA J F M, LEON N.Long-term forecasting of household and residential electric customers in Brazil[J].IEEE Latin America Transactions,2012,10(2):1537-1543.
    [2] 程潛善,方華亮. 一種應用大數據技術的中長期負荷預測方法[J]. 武漢大學學報(工學版),2017,50(2):239-244.
    [3] KANDIL M S, El-DEBEIKY S M, HASANIEN N E. Long-term load forecasting for fast developing utility using a knowledge-based expert system[J]. IEEE Power Engineering Review, 2002,22(4):78.
    [4] 張強,王毅,李鼎睿,朱文俊. 基于X -12- A R I M A季節分解與年度電量校正的月度電量預測[ J ] . 電力建設,2017,38(1):76-83.
    [5] 吳鈺, 王杰. 綜合最優灰色支持向量機模型在季節型電力負荷預測中的應用[J]. 華東電力,2012(1):18-21.
    [6] 宋曉華,祖丕娥,伊靜,劉達. 基于改進GM(1,1)和SVM的長期電量優化組合預測模型[J]. 中南大學學報(自然科學版),2012,43(5):1803-1807.
    [7] 劉宇,郭林,陽鋒,江登笠,任鈴,李君. 基于改進灰色理論的中長期負荷預測方法研究[J]. 電網與清潔能源,2016,32(8):51-56.
    [8] 任工昌, 劉麗, 苗新強. 改進灰色模型在電力負荷中的預測分析及實現[J]. 機械設計與制造,2010(2):232-234.
    [9] 李曉波.GM(1,N ) 改進模型在年度售電量預測中的應用[J]. 中國新技術新產品,2016(3):4-5.
    [10] WU Yichun, CHENG Zhenying, LI Miao.Med-long term system structure forecasting of power consumption based on grey derived model[C]//Proceedings of 2013 IEEE International Conference on Grey Systems and Intelligent Services (GSIS),2013.
    [11] 劉洪久,沙巨山,季明月,胡彥蓉. 蘇州電力需求的影響因素及電量預測研究[J]. 常熟理工學院學報,2014,28(5):7-11.
    [12] 葛斐,榮秀婷,石雪梅,楊欣,李周. 基于經濟、氣象因素的安徽省年最大負荷預測方法研究[J].中國電力,2015,48(3):84-87.
    [13] 鄭軍偉. 基于灰色系統理論的數據關聯度建模及其應用[D]. 杭州:杭州電子科技大學,2011.
    [14] 趙莉琴,劉敬嚴. 基于灰色GM (1,N ) 模型的河北物流貨運量預測[J]. 石家莊鐵道大學學報(社會科學版),2015,9(2):10-15.

     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();