一種新的電壓暫降事故源識別方法研究
蔣小偉,呂干云,武陽
(南京工程學院 電力工程學院,江蘇 南京 211167)
摘 要:電壓暫降發生頻率高、影響范圍廣、造成危害大。針對電力監測系統中帶有事故源信息的電壓暫降監測數據非常有限且不易獲得的問題,提出了一種基于半監督支持向量機的電壓暫降源識別方法。分析了各種電壓暫降事故源,利用短時傅里葉變換(STFT)對電壓暫降信號進行時頻分析,提取出各類暫降特性參數,運用半監督支持向量機對其進行訓練與識別,實現在少量帶事故源標簽電壓暫降監測數據下電壓暫降源的可靠識別。算例結果顯示,在少量標簽數據下半監督支持向量機比傳統支持向量機具有更高的暫降源識別精度。
關鍵詞:電壓暫降;電壓暫降源識別;短時傅里葉變換;半監督支持向量機;標簽數據
中圖分類號:TM714 文獻標識碼:A 文章編號:1007-3175(2018)05-0023-04
A New Kind of Method for Identification of Voltage Sags Accident Source
JIANG Xiao-wei, LV Gan-yun, WU Yang
(School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167 , China)
Abstract: Voltage sag has the characteristics of high frequency, wide influence and great harm, etc. This paper proposed a voltage sag source identification method based on the semi-supervised support vector machine (SVM) in view of the situation that the labeled data with accident source information was very limited and not easy to obtain in the power monitoring system. All kinds of voltage sag sources were analyzed. The short time Fourier transform (STFT) was used for time-frequency analysis. All kinds of voltage sag characteristic parameters were extracted and the semi-supervised SVM was adopted for training and identification to realize the reliable identification of voltage sag sources under the conditions that there was a small number of labeled voltage sag monitoring data. Example results show that the semisupervised SVM has higher identification accuracy than the traditional SVM in the case of a small number of labeled data.
Key words: voltage sag; identification of voltage sags source; short time Fourier transform; semi-supervised support vector machine; labeled data
參考文獻
[1] ZHANG Lidong, BOLLEN M H J.Characteristic of voltage dips in power system[J]. IEEE Transactions on Power Delivery,2000,15:827-832.
[2] 張波. 電壓暫降特征提取與擾動原因分析[D]. 北京:中國電力科學研究院,2005.
[3] 劉奇,周雒維,盧偉國. 基于廣義S變換的暫態電能質量擾動定位與識別[J]. 電力系統保護與控制,2012,40(7):60-65.
[4] 呂干云,方奇品,蔡秀珊. 基于多分類支持向量機的電壓暫降源識別[J]. 電力系統保護與控制,2010,38(22):151-155.
[5] 李國棟,丁寧,徐永海. 基于Mamdani型模糊推理的電壓暫降源識別[J]. 華北電力大學學報,2010,37(2):43-48.
[6] 劉建偉,劉媛,羅雄麟. 半監督學習方法[J]. 計算機學報,2015,38(8):1592-1617.
[7] 王世旭,呂干云.基于標簽傳播半監督學習的電壓暫降源識別[J]. 電力系統及其自動化學報,2013,25(4):34-38.
[8] 徐志超,楊玲君,李曉明. 基于聚類改進S變換與直接支持向量機的電能質量擾動識別[J]. 電力自動化設備,2015,35(7):50-58.
[9] 王學偉,張宏財. 基于S變換和最小二乘支持向量機的電能質量擾動識別[J]. 電測與儀表,2009,46(8):1-4.
[10] MELHORN C J, DAVIS T D, BEAM G E.Voltage sags:their impact on the utility and industrial customers[J]. IEEE Transactions on Industry Applications,1998,34(2):549-558.
[11] 李昆侖,張偉,代運娜. 基于Tri-training的半監督SVM[J]. 計算機工程與應用,2009,45(22):103-106.
[12] CHEN K, WANG S.Semi-supervised learning via regularized boosting working on multiple semisupervised assumptions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(1):129-143.
[13] WANG Fei, ZHANG Changshui.Label propagation through linear neighborhoods[J]. IEEE Transactions on Knowledge and Date Engineering,2008,20(1):55-67.
[14] 徐健,張語勍,李彥斌. 短時傅里葉變換和S變換用于檢測電壓暫降的對比研究[J]. 電力系統保護與控制,2014,42(24):44-48.