<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號(hào): CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁(yè) >> 文章檢索 >> 往年索引

    基于PSO-RBF的輸電線路覆冰預(yù)測(cè)研究

    來源:電工電氣發(fā)布時(shí)間:2018-06-15 14:15 瀏覽次數(shù):723
    基于PSO-RBF的輸電線路覆冰預(yù)測(cè)研究
     
    焦晗,黃陳蓉,李焱飛
    (南京工程學(xué)院 電力工程學(xué)院,江蘇 南京 211167)
     
        摘 要:覆冰后的架空輸電線路在風(fēng)載荷的作用下,容易產(chǎn)生導(dǎo)線舞動(dòng)現(xiàn)象,嚴(yán)重危害輸電線路安全。提出一種基于PSO-RBF的神經(jīng)網(wǎng)絡(luò)模型對(duì)輸電線路的覆冰情況進(jìn)行預(yù)測(cè),對(duì)微氣象參數(shù)影響因子進(jìn)行排序,選取合適的微氣象因素作為模型的輸入,降低建模輸入的維度,并通過粒子群算法對(duì)RBF神經(jīng)網(wǎng)絡(luò)參數(shù)進(jìn)行優(yōu)化,與單一的RBF神經(jīng)網(wǎng)絡(luò)相比提高了預(yù)測(cè)精度,能及時(shí)了解導(dǎo)線覆冰的趨勢(shì)并給出預(yù)警,有效防止嚴(yán)重覆冰事故的發(fā)生。
        關(guān)鍵詞:架空輸電線路;覆冰預(yù)測(cè);微氣象;神經(jīng)網(wǎng)絡(luò)
        中圖分類號(hào):TM726     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2018)06-0033-04
     
    Prediction Research on Transmission Line Icing Based on Particle Swarm Optimization-Radial Basis Function
     
    JIAO Han, HUANG Chen-rong, LI Yan-fei
    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)
     
        Abstract: The icing overhead transmission lines under the action of wind load are easy to generate the galloping phenomenon, which is seriously harmful to the safe operation of transmission lines. This paper proposed a kind of neural network model based on particle swarm optimization-radial basis function (PSO-RBF) to carry out prediction for the icing condition of transmission lines, to sort the micro meteorological parameters, to select the suitable micro meteorological parameters as the input of model and to reduce the dimensions of modeling input. The algorithm of PSO was used to optimize the RBF neural network and compared with the single RBF neural network, its prediction accuracy was improved, which makes the icing trend of transmission lines known in time with warning to effectively prevent serious icing accidents.
        Key words: overhead transmission line; icing prediction; microclimate; neural network
     
    參考文獻(xiàn)
    [1] 蔣興良,易輝. 輸電線路覆冰及防護(hù)[M]. 北京:中國(guó)電力出版社,2002.
    [2] 胡毅. 輸電線路大范圍冰害事故分析及對(duì)策[J]. 高電壓技術(shù),2005,31(4) :14-15.
    [3] 許博. 架空輸電線路覆冰問題研究[J]. 城市建設(shè)理論研究,2014(10) :43-44.
    [4] 劉和云,周迪,付俊萍,等. 導(dǎo)線雨淞覆冰預(yù)測(cè)簡(jiǎn)單模型的研究[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2001,21(4) :44-47.
    [5] 黃新波,劉家兵,蔡偉,等. 電力架空線路覆冰雪的國(guó)內(nèi)外研究現(xiàn)狀[J]. 電網(wǎng)技術(shù),2008,32(4) :23-28.
    [6] 劉春城,劉法棟,毛緒坤,等. 高壓輸電塔線體系覆冰的研究現(xiàn)狀與展望[J]. 東北電力大學(xué)學(xué)報(bào),2011,31(5/6) :16-22.
    [7] 劉春城,劉佼. 輸電線路導(dǎo)線覆冰機(jī)理及雨凇覆冰模型[J]. 高電壓技術(shù),2011,37(1) :241-248.
    [8] 晏鳴宇,周志宇,文勁宇,等. 基于短期覆冰預(yù)測(cè)的電網(wǎng)覆冰災(zāi)害風(fēng)險(xiǎn)評(píng)估方法[J]. 電力系統(tǒng)自動(dòng)化,2016,40(21) :168-175.
    [9] 陽(yáng)林,郝艷捧,黎衛(wèi)國(guó),等.輸電線路導(dǎo)線覆冰與導(dǎo)線溫度和微氣象參數(shù)關(guān)聯(lián)分析[J]. 高電壓技術(shù),2010,36(3) :775-781.
    [10] 何耀耀,許啟發(fā),楊善林,等. 基于RBF神經(jīng)網(wǎng)絡(luò)分位數(shù)回歸的電力負(fù)荷概率密度預(yù)測(cè)方法[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2013,33(1) :93-98.
    [11] 劉宇,鐘平安,張夢(mèng)然,等.隱層節(jié)點(diǎn)數(shù)經(jīng)驗(yàn)公式在水庫(kù)調(diào)度規(guī)則提取中的應(yīng)用效果評(píng)價(jià)[J]. 水電能源科學(xué),2012(11) :42-44.

     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();