<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號: CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁 >> 文章檢索 >> 文章瀏覽排名

    基于PSO-RBF的輸電線路覆冰預測研究

    來源:電工電氣發布時間:2018-06-15 14:15 瀏覽次數:650
    基于PSO-RBF的輸電線路覆冰預測研究
     
    焦晗,黃陳蓉,李焱飛
    (南京工程學院 電力工程學院,江蘇 南京 211167)
     
        摘 要:覆冰后的架空輸電線路在風載荷的作用下,容易產生導線舞動現象,嚴重危害輸電線路安全。提出一種基于PSO-RBF的神經網絡模型對輸電線路的覆冰情況進行預測,對微氣象參數影響因子進行排序,選取合適的微氣象因素作為模型的輸入,降低建模輸入的維度,并通過粒子群算法對RBF神經網絡參數進行優化,與單一的RBF神經網絡相比提高了預測精度,能及時了解導線覆冰的趨勢并給出預警,有效防止嚴重覆冰事故的發生。
        關鍵詞:架空輸電線路;覆冰預測;微氣象;神經網絡
        中圖分類號:TM726     文獻標識碼:A     文章編號:1007-3175(2018)06-0033-04
     
    Prediction Research on Transmission Line Icing Based on Particle Swarm Optimization-Radial Basis Function
     
    JIAO Han, HUANG Chen-rong, LI Yan-fei
    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)
     
        Abstract: The icing overhead transmission lines under the action of wind load are easy to generate the galloping phenomenon, which is seriously harmful to the safe operation of transmission lines. This paper proposed a kind of neural network model based on particle swarm optimization-radial basis function (PSO-RBF) to carry out prediction for the icing condition of transmission lines, to sort the micro meteorological parameters, to select the suitable micro meteorological parameters as the input of model and to reduce the dimensions of modeling input. The algorithm of PSO was used to optimize the RBF neural network and compared with the single RBF neural network, its prediction accuracy was improved, which makes the icing trend of transmission lines known in time with warning to effectively prevent serious icing accidents.
        Key words: overhead transmission line; icing prediction; microclimate; neural network
     
    參考文獻
    [1] 蔣興良,易輝. 輸電線路覆冰及防護[M]. 北京:中國電力出版社,2002.
    [2] 胡毅. 輸電線路大范圍冰害事故分析及對策[J]. 高電壓技術,2005,31(4) :14-15.
    [3] 許博. 架空輸電線路覆冰問題研究[J]. 城市建設理論研究,2014(10) :43-44.
    [4] 劉和云,周迪,付俊萍,等. 導線雨淞覆冰預測簡單模型的研究[J]. 中國電機工程學報,2001,21(4) :44-47.
    [5] 黃新波,劉家兵,蔡偉,等. 電力架空線路覆冰雪的國內外研究現狀[J]. 電網技術,2008,32(4) :23-28.
    [6] 劉春城,劉法棟,毛緒坤,等. 高壓輸電塔線體系覆冰的研究現狀與展望[J]. 東北電力大學學報,2011,31(5/6) :16-22.
    [7] 劉春城,劉佼. 輸電線路導線覆冰機理及雨凇覆冰模型[J]. 高電壓技術,2011,37(1) :241-248.
    [8] 晏鳴宇,周志宇,文勁宇,等. 基于短期覆冰預測的電網覆冰災害風險評估方法[J]. 電力系統自動化,2016,40(21) :168-175.
    [9] 陽林,郝艷捧,黎衛國,等.輸電線路導線覆冰與導線溫度和微氣象參數關聯分析[J]. 高電壓技術,2010,36(3) :775-781.
    [10] 何耀耀,許啟發,楊善林,等. 基于RBF神經網絡分位數回歸的電力負荷概率密度預測方法[J]. 中國電機工程學報,2013,33(1) :93-98.
    [11] 劉宇,鐘平安,張夢然,等.隱層節點數經驗公式在水庫調度規則提取中的應用效果評價[J]. 水電能源科學,2012(11) :42-44.

     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();