<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號: CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁 >> 文章檢索 >> 文章瀏覽排名

    考慮氣象因素的PCA-BP神經網絡短期負荷預測

    來源:電工電氣發布時間:2018-07-24 13:24 瀏覽次數:585
    考慮氣象因素的PCA-BP神經網絡短期負荷預測
     
    王海峰,姜雲騰,李萍
    (寧夏大學 物理與電子電氣工程學院,寧夏 銀川 750021)
     
        摘 要:為有效提高電力系統短期負荷預測精度及效率,提出一種基于主成分分析的BP神經網絡短期負荷預測優化算法。利用主成分分析法將多個原始變量降維成少數彼此獨立的變量作為輸入,并根據各主成分的貢獻率來確定網絡的結構,有效解決BP網絡預測精度與效率不高問題。在考慮氣象因素的影響下通過對某地區歷史負荷數據進行訓練仿真,平均預測精度接近98%,預測程序運行效率提高兩倍以上,仿真結果表明,該模型在效率和預測精度方面優于BP神經網絡模型。
        關鍵詞:主成分分析;負荷預測;BP 神經網絡
        中圖分類號:TM715    文獻標識碼:A     文章編號:1007-3175(2018)07-0038-04
     
    Short-Term Load Forecasting Based on Principal Component Analysis-Back
    Propagation Neural Network Considering Meteorological Factor
     
    WANG Hai-feng, JANG Yun-teng, LI Ping
    (School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China)
     
        Abstract: In order to effectively improve the accuracy and efficiency of short-term load forecasting, this paper proposed a back propagation(BP) neural network short-term load forecasting optimization algorithm based on the principal component analysis. The principal component analysis method was used to reduce a number of original variables into a few independent variables as input, and to determine the network structure according to the contribution rate of the main components, and effectively solve the problem of low prediction accuracy and efficiency of BP network. Taking the influence of meteorological factors into consideration, the results of training and simulation of historical load data in a certain area show that the average prediction accuracy is close to 98%, which is more than two times of the running efficiency of the forecast program. The simulation results show that the model is superior to the BP neural network model in efficiency and prediction accuracy.
        Key words: principal component analysis; load forecasting; back propagation neural network
     
    參考文獻
    [1] 廖旎煥,胡智宏,馬瑩瑩,等. 電力系統短期負荷預測方法綜述[J]. 電力系統保護與控制,2011,39(1) :147-152.
    [2] 呂躍春,邵常寧,劉欣宇,等. 粒子群優化BP神經網絡在短期負荷預測誤差修正模型中的應用研究[J]. 電氣應用,2015,34(5) :28-32.
    [3] 張奔,史沛然,蔣超. 氣象因素對京津唐電網夏季負荷特性影響分析[J]. 電力自動化設備,2013,33(12) :140-144.
    [4] 李培強,李慧,李欣然. 基于靈敏度與相關性的綜合負荷模型參數優化辨識策略[J]. 電工技術學報,2016,31(16) :181-188
    [5] 李龍,魏靖,黎燦兵,等. 基于人工神經網絡的負荷模型預測[J]. 電工技術學報,2015,30(8) :225-230.
    [6] 杜莉,張建軍. 神經網絡在電力負荷預測中的應用研究[J]. 計算機仿真,2015,30(8) :225-230.
    [7] 隋惠惠. 基于BP神經網絡的短期電力負荷預測的研究[D]. 哈爾濱:哈爾濱工業大學,2015.
    [8] 許童羽,馬藝銘,曹英麗,等. 基于主成分分析和遺傳優化BP神經網絡的光伏輸出功率短期預測[J]. 電力系統保護與控制,2016,44(22) :90-95.

     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();