基于遺傳禁忌混合算法的配電網無功優化
李曉彤,李肇漢
(上海電力大學 自動化工程學院,上海 200090)
摘 要:為了有效解決由配電網分布式電源(distribution generation,DG)滲透率逐漸升高帶來的 電壓越限、網損增加問題。建立了配電網無功優化模型,以網損最小和電壓不越限為綜合目標,通過采用一種遺傳禁忌混合算法(genetic/tabu hybrid algorithm,GATS)研究了接入DG的配電網無功優化問題。在MATLAB軟件上以IEEE-33節點配電系統為算例對所研究問題進行了分析與驗證。結果表明:GATS混合算法的可行性和優越性較強,通過該算法進行無功優化可以有效改善系統電壓水平、降低網損;并且適當提高DG滲透率,同樣有利于網損降低、電壓水平提高;但若DG滲透率過高,會導致網損增加、電壓越限問題,通過GATS算法進行無功優化這些問題可得到有效解決。
關鍵詞:配電網;高滲透率分布式電源;無功優化;遺傳算法;禁忌搜索算法;遺傳禁忌混合算法
中圖分類號:TM715 文獻標識碼:A 文章編號:1007-3175(2019)04-0013-06
Reactive Power Optimization of Power Distribution Network Based on Genetic Tabu Hybrid Algorithm
LI Xiao-tong, LI Zhao-han
(College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
Abstract: In order to effectively solve the problems of voltage violation and the increase of network loss caused by the gradual increase of the distribution generation (DG) permeability in the distribution network, this paper established a reactive power optimization model of distribution network, which took the minimum network loss and the voltage non-violation as the comprehensive goal. A kind of genetic tabu hybrid algorithm (GATS) was adopted to study the problem of reactive power optimization in distribution network. In MATLAB the IEEE-33 node distribution system was taken as an example to analyze and verify the research problems.The results show that the feasibility and superiority of the GATS are stronger, the voltage profiles of the system are improved and the network loss is reduced effectively by optimization with this algorithm; and the proper increase of DG permeability can reduce the network loss and improve the voltage level, however, if the permeability of DG is too high, the problems of increasing network loss and voltage violation will be caused, but the reactive power optimization with GATS algorithm can solve these problems effectively.
Key words: distribution network; distributed generations of high permeability; reactive power optimization; genetic algorithm; tabu search algorithm; genetic tabu hybrid algorithm
參考文獻
[1] 馮興田,韋統振,孔令志. 高滲透分布式發電對配電網電壓質量的影響研究[J]. 水電能源科學,2010,28(9):154-157.
[2] 王玲玲,王昕,鄭益慧,等. 計及多個風電機組出力相關性的配電網無功優化[J]. 電網技術,2017,41(11):3463-3469.
[3] KRYONIDIS G C, THEOLOGOU N V, CHRYSOCHOS A I, et al.An enhanced decentralized voltage regulation scheme for the reduction of tap changes in HVMV transformers under high DG penetration[C]//IEEE PES Innovative Smart Grid Technologies Conference Europe(ISGTEurope),2016:1-6.
[4] 顏偉,陳思柔,沈海江,等. 配變低壓無功補償裝置的運行狀態評估指標體系[J]. 電力自動化設備,2016,36(4):25-31.
[5] GAO S, WANG H, WANG C, et al. Reactive power optimization of low voltage distribution network based on improved particle swarm optimization[C]//20th International Conference on Electrical Machines and Systems(ICEMS),2017:1-5.
[6] 吳峰,李瑋. 含高滲透率分布式光伏發電系統的配電網動態等值分析[J]. 電力系統自動化,2017,41(9):65-70.
[7] 王穎,文福拴,趙波,等. 高密度分布式光伏接入下電壓越限問題的分析與對策[J]. 中國電機工程學報,2016,36(5):1200-1206.
[8] 董雷,明捷,于汀,等. 分布式電源高滲透率交直流主動配電網運行控制策略[J]. 電力建設,2016,37(5):57-62.
[9] KRYONIDIS G C, DEMOULIAS C S, PAPAGIANNIS G K. A Nearly Decentralized Voltage Regulation Algorithm for Loss Minimization in Radial MV Networks with High DG Penetration[J].IEEE Transactions on Sustainable Energy,2016,7(4):1430-1439.
[10] 孫亮,呂凌虹,張秀琦,等. 智能優化算法應用于分布式電源配電網無功優化綜述[J]. 東北電力大學學報,2017,37(4):27-31.
[11] 李惠玲,盛萬興,孟曉麗. 基于改進小生境遺傳算法的配電網全網無功優化[J]. 電網技術,2009,33(4):34-37.
[12] 向小蓉,劉滌塵,向農,等. 基于并行禁忌搜索算法的配電網重構[J]. 電網技術,2012,36(8):100-105.
[13] 惠欣. 分布式發電及其對配電網的影響[J]. 寧夏電力,2009(4):25-27.
[14] 董百強. 基于禁忌搜索算法的配電網重構研究[D].重慶:重慶大學,2006.