基于自組織神經網絡的火電廠健康狀態數據提取算法
吳勝聰,陳雨軒,沈可心,程浩軒
(三峽大學 電氣與新能源學院,湖北 宜昌 443002)
摘 要:火電廠設備健康數據提取是火電廠設備狀態評估數據處理的一個關鍵步驟,有利于提高設備狀態評估的準確性與效率。將設備狀態數據首先利用R 型層次聚類進行特征參數選取與冗余數據清除,再采用自組織神經網絡篩選異常值。利用所訴方法對某發電廠的汽泵前置泵設備的監測數據進行健康狀態數據提取,發現清除的異常數據遠遠大于提取出的健康數據,表明該方法清除的數據滿足預期,為后續健康狀態評估提供了準確的參照數據,并且降低監測數據維度提高評估效率。
關鍵詞:大數據;自組織神經網絡;R 型聚類;電力設備狀態數據
中圖分類號:TM621 文獻標識碼:A 文章編號:1007-3175(2019)09-0027-06
Health State Data Extraction Algorithm for Thermal Power Plant Based on Self-Organizing Neural Network
WU Sheng-cong, CHEN Yu-xuan, SHEN Ke-xin, CHENG Hao-xuan
(College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China)
Abstract: The health data extraction of thermal power plant equipment is a key step in the processing of equipment state assessment of thermal power plants, which is conducive to improving the accuracy and efficiency of equipment state assessment. The power equipment status data were carried out characteristic parameters selection and redundant data eliminating by R-type hierarchical clustering, then the outliers of device status data were filtered by self-organizing neural network. The proposed algorithm was used to extract the health status data from the monitoring data on turbine pump booster pump device in certain power plant. It is found that The clearing abnormal data is far greater than the extracted health data, which indicates that the algorithm meets the expectation. This algorithm provides the accurate reference data for subsequent health assessment, reducing the monitoring data dimension and improving evaluation efficiency.
Key words: big data; self-organizing neural network; R-type clustering; power equipment status data
參考文獻
[1] 高起棟. 基于數據挖掘技術的火電廠設備狀態監測系統[J]. 工業技術創新,2017,4(6):24-27.
[2] 謝小鵬,林玥廷,林英明. 火電廠設備狀態監測與故障預警的研究[J]. 華電技術,2018,40(6):7-9.
[3] 嚴英杰,盛戈皞,陳玉峰,等. 基于時間序列分析的輸變電設備狀態大數據清洗方法[J]. 電力系統自動化,2015,39(7):138-144.
[4] 徐步云,倪禾. 自組織神經網絡和K-means聚類算法的比較分析[J]. 新型工業化,2014,4(7):63-69.
[5] 劉煥海,葉劍鋒,阿斯耶姆. 基于自組織特征映射網絡(SOM) 的聚類分析方法[J]. 軟件導刊,2016,15(12):133-135.
[6] 馮震. 無線傳感器網絡數據離群點檢測若干方法研究[D]. 上海:上海大學,2017.
[7] 陸可,鄒啟鳴,李鳴,等. 基于R型聚類- 因子分析的指標體系簡化方法[J]. 計算機系統應用,2016,25(5):118-123.
[8] 張好勇,張東亮,高樹軍,等. 基于自組織特征映射神經網絡的高壓斷路器故障診斷[J]. 電氣應用,2016,35(23):21-24.
[9] 焦毛. 基于多重分形和SOM神經網絡的水電機組振動故障診斷研究[D]. 西安:西安理工大學,2018.