計及電池放電損耗的電動汽車充放電優化調度策略
戴越繁,楊偉
(南京理工大學 自動化學院,江蘇 南京 210094)
摘 要:針對現有電動汽車充放電策略對電池放電損耗考慮不夠深入的問題,提出一種計及電池放電損耗的充放電優化調度策略。該策略以峰谷分時電價為背景,根據電池損耗模型計算電池放電損耗并計入用戶用電成本,建立以電網負荷波動和用戶用電成本為目標函數,以充放電功率、電池可用容量、不可用時段和出行SOC要求為約束條件的多目標優化調度模型,采用基于雜交的混合粒子群算法求解。利用Matlab進行算例仿真,針對不同電池損耗模型、不同調度車輛數以及不同分時電價下調度策略的優化效果進行了對比分析,驗證了該策略的可行性和有效性。
關鍵詞:電動汽車;充放電調度;分時電價;電池損耗;多目標優化
中圖分類號:TM734;U469.72 文獻標識碼:A 文章編號:1007-3175(2019)10-0001-08
An Optimal Dispatching Strategy for Charging and Discharging of Electric Vehicles Accounting Battery Discharging Loss
DAI Yue-fan, YANG Wei
(College of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)
Abstract: Aiming at the problem that the existent charging and discharging strategies of electric vehicles seldom consider the battery discharging loss in depth, this paper proposed an optimal dispatching strategy for charging and discharging considering battery discharging loss. This strategy took the peak-valley time-of-use price as the background, calculated the battery discharging loss based on battery loss model and took the user's electricity cost into account. In the optimal dispatching model, the load fluctuation in power grid and user cost were set as the multiple objective function to be optimized. Charging and discharging power, available battery capacity, unavailable period and travel SOC requirements were set as the constraint of multi-objective optimization model. The model was solved by hybrid particle swarm optimization. With the Matlab example simulation, in allusion to the different battery loss models, different dispatching vehicles number and different time-of-use price on the dispatching strategy were compared and analyzed, which proves the feasibility and effectiveness of the proposed strategy.
Key words: electric vehicles; charging and discharging dispatching; time-of-use price; battery loss; multi-objective optimization
參考文獻
[1] International Energy Agency. Key world energy statistics-2015[R/OL].[2017-03-07].http://www.iea.org/statistics/.
[2] 中國儲能網新聞中心. 電動汽車銷量數據分析及2016展望[ EB/OL]. [2017-11-02] . h t t p : / / w w w . escn.com.cn/news/show-300405.html.
[3] 何西,涂春鳴,王麗麗,等. 考慮用戶行車習慣的電動汽車充電雙層控制策略[J]. 電力系統自動化,2018,42(3):64-69.
[4] 徐浩,夏鑫玨,李輝,等. 計及充電請求預測補償的電動汽車有序充電策略[J]. 電力系統保護與控制,2016,44(24):74-81.
[5] 佟晶晶,溫俊強,王丹,等. 基于分時電價的電動汽車多目標優化充電策略[J]. 電力系統保護與控制,2016,44(1):17-23.
[6] 胡德權,郭春林,俞秦博,等. 基于電價引導的電動汽車充電雙層優化策略[J]. 電力建設,2018,39(1):48-53.
[7] 王鑫,周步祥,唐浩. 考慮用戶因素的電動汽車有序充放電控制策略[J]. 電力系統保護與控制,2018,46(4):21-27.
[8] 劉洵源,齊峰,文福拴,等. 光伏不平衡接入的配電系統中電動汽車有序充電策略[J]. 電力建設,2018,39(6):21-27.
[9] 嚴俊,嚴鳳. 峰谷分時電價背景下的居民電動汽車有序充放電策略[J]. 電力系統保護與控制,2018,46(15):127-134.
[10] ZHOU C, QIAN K, ALLAN M, et al.Modeling of the cost of EV battery wear due t o V2G application in power systems[J].IEEE Transactions on Energy Conversion,2011,26(4):1041-1050.
[11] 劉利兵,劉天琪,張濤,等. 計及電池動態損耗的電動汽車有序充放電策略優化[ J ] . 電力系統自動化,2016,40(5):83-90.
[12] KEMPTON W, TOMIC J.Vehicle-to-grid power fundamentals:calculating capacity and net revenue[J].Journal of Power Sources,2005,144(1):268-279.
[13] 董婷婷. 增程式電動車能量管理及電池壽命研究[D]. 吉林:吉林大學,2013.
[14] 魏大鈞,張承慧,孫波,等. 基于分時電價的電動汽車充放電多目標優化調度[ J ] . 電網技術,2014,38(11):2972-2977.
[15] 韓海英. V2G 參與電網調峰和調頻控制策略研究[D]. 北京:北京交通大學,2011.
[16] 包子陽,余繼周,楊杉. 智能優化算法及其MATLAB實例[M]. 北京:工業電子出版社,2016:111-119.
[17] 溫正. 精通MATLAB 智能算法[M]. 北京:清華大學出版社,2015:106-113.
[18] 高尚,楊靜宇. 群智能算法及其應用[M]. 北京:中國水利水電出版社,2006:21-25.
[19] 王岱,管曉宏,吳江,等. 基于車輛行駛行為特性建模的電動汽車充放電策略與分析[J]. 電網技術,2014,38(9):2322-2327.
[20] 徐智威,胡澤春,宋永華,等. 基于動態分時電價的電動汽車充電站有序充電策略[J]. 中國電機工程學報,2014,34(22):3638-3646.
[21] 溫劍鋒,陶順,肖湘寧,等. 基于出行鏈隨機模擬的電動汽車充電需求分析[J]. 電網技術,2015,39(6):1477-1484.