<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號(hào): CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁(yè) >> 文章檢索 >> 往年索引

    基于長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)的電力系統(tǒng)負(fù)荷預(yù)測(cè)方法研究

    來(lái)源:電工電氣發(fā)布時(shí)間:2019-11-19 13:19 瀏覽次數(shù):765
    基于長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)的電力系統(tǒng)負(fù)荷預(yù)測(cè)方法研究
     
    王鑫琪,李闖,焦晗,李焱飛
    (南京工程學(xué)院 電力工程學(xué)院,江蘇 南京 211167)
     
        摘 要:準(zhǔn)確的負(fù)荷預(yù)測(cè)對(duì)保持電網(wǎng)的穩(wěn)定性和提高當(dāng)?shù)亟?jīng)濟(jì)效益、節(jié)約成本有重大幫助??紤]到負(fù)荷數(shù)據(jù)帶有時(shí)序性,以及智能電網(wǎng)的發(fā)展所帶來(lái)的數(shù)據(jù)量的增大,建立了長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)模型來(lái)對(duì)未來(lái)用電量進(jìn)行短期負(fù)荷預(yù)測(cè)。針對(duì)Adam訓(xùn)練算法可能存在的收斂問(wèn)題,對(duì)其進(jìn)行了改進(jìn),并通過(guò)MATLAB軟件對(duì)LSTM網(wǎng)絡(luò)進(jìn)行建模,通過(guò)與BP神經(jīng)網(wǎng)絡(luò)進(jìn)行對(duì)比,結(jié)果表明,LSTM模型具有更高的精確度以及實(shí)用性。
        關(guān)鍵詞:短期負(fù)荷預(yù)測(cè);BP神經(jīng)網(wǎng)絡(luò);長(zhǎng)短時(shí)記憶網(wǎng)絡(luò);Adam算法
        中圖分類號(hào):TM715     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2019)11-0017-04
     
    Research on Power System Load Forecasting Method Based on Long-Term and Short-Term Memory Network
     
    WANG Xin-qi, LI Chuang, JIAO Han, LI Yan-fei
    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 2111 67, China)
     
        Abstract: Load forecasting is an important part of power system dispatching. Accurate load forecasting is of great help to maintain grid stability and improve local economic benefits and cost. Considering the sequential nature of load data and the increase in data volume brought about by the development of smart grids, a long-term and short-term memory network (LSTM) model was established to make shortterm predictions of future electricity consumption. On this basis, the convergence problem of Adam training algorithm may be improved. It is simulated by MATLAB software and compared with BP neural network. The results show that the LSTM model has higher accuracy and practicability.
        Key words: short-term load forecast; BP neural network; long-term and short-term memory network; Adam algorithm
     
    參考文獻(xiàn)
    [1] 徐堯強(qiáng),方樂(lè)恒,趙冬華,王凱. 基于LSTM神經(jīng)網(wǎng)絡(luò)的用電量預(yù)測(cè)[J]. 電力大數(shù)據(jù),2017,20(8):25-29.
    [2] 張宇航,邱才明,賀興,凌澤南,石鑫. 一種基于LSTM神經(jīng)網(wǎng)絡(luò)的短期用電負(fù)荷預(yù)測(cè)方法[J]. 電力信息與通信技術(shù),2017,15(9):19-25.
    [3] 陳卓,孫龍祥. 基于深度學(xué)習(xí)LSTM網(wǎng)絡(luò)的短期電力負(fù)荷預(yù)測(cè)方法[J]. 電子技術(shù),2018,47(1):39-41.
    [4] 劉進(jìn)波,周克男,任明會(huì). 基于相關(guān)因子的BP神經(jīng)網(wǎng)絡(luò)電力負(fù)荷短期預(yù)測(cè)[J]. 信息記錄材料,2018,19(1):211-214.
    [5] 陳英慧,商淼,李婷,高紅艷. 基于GA-BP算法的呼和浩特地區(qū)短期電力負(fù)荷預(yù)測(cè)[J]. 山東工業(yè)技術(shù),2018(5):170.
    [6] 王德文,孫志偉. 電力用戶側(cè)大數(shù)據(jù)分析與并行負(fù)荷預(yù)測(cè)[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2015,35(3):527-537.
    [7] 劉文博. 基于神經(jīng)網(wǎng)絡(luò)的短期負(fù)荷預(yù)測(cè)方法研究[D]. 杭州:浙江大學(xué),2017.
    [8] 程宇也. 基于人工神經(jīng)網(wǎng)絡(luò)的短期電力負(fù)荷預(yù)測(cè)研究[D]. 杭州:浙江大學(xué),2017.
    [9] 朱振偉. 氣象因素對(duì)電網(wǎng)負(fù)荷特性影響的研究[D].杭州:浙江大學(xué),2008.
    [10] 李萌,程浩忠,楊宗麟,韓新陽(yáng),楊鏡非. 采用分形插值的典型日負(fù)荷曲線改進(jìn)預(yù)測(cè)方法[J]. 電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2015,27(3):36-41.
    [11] 陳鯉江,景程,吳姚鑫,鄭水泉. 數(shù)學(xué)表達(dá)式的歸一化方法研究[J]. 浙江工業(yè)大學(xué)學(xué)報(bào),2012,40(2):229-232.

     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();