<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號: CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁 >> 文章檢索 >> 文章瀏覽排名

    基于遺傳算法改進BP神經網絡的風電功率預測研究

    來源:電工電氣發布時間:2019-12-19 09:19 瀏覽次數:452
    基于遺傳算法改進BP神經網絡的風電功率預測研究
     
    王冰冰,趙天樂
    (南京理工大學 自動化學院,江蘇 南京 210094)
     
        摘 要:風電功率預測對于風電場和電網的安全可靠運行具有重要意義。以某風力發電機為研究對象,根據該風機歷史天氣信息和風電功率數據,使用遺傳算法改進BP神經網絡,構建復合型神經網絡的風電功率預測系統。運用MATLAB軟件對算法進行編程與仿真,仿真結果表明,單一的BP神經網絡預測系統波動性較高,精度不足,而復合型的神經網絡算法有效地解決了這一問題,改進后的預測系統精度較高、穩定性較強,滿足工業生產需求。
        關鍵詞:風電;功率預測;BP 神經網絡;遺傳算法
        中圖分類號:TM614     文獻標識碼:A     文章編號:1007-3175(2019)12-0016-06
     
    Research on Wind Power Prediction Based on Improved BP Neural Network of Genetic Algorithm
     
    WANG Bing-bing, ZHAO Tian-le
    (School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)
     
        Abstract: Wind power prediction is of great significance for the safe and reliable operation of wind farms and power system. Taking a wind turbine as the research object, according to the historical weather information and power generation data of the turbine, the BP neural network was improved by genetic algorithm, and a composite neural network wind power prediction system was constructed. The arithmetic was programmed and simulated by MATLAB. The simulation results show that the single BP neural network prediction system has high fluctuation and insufficient precision, however, the compound neural network algorithm effectively solves this problem. The improved prediction system has high accuracy and stability, and meets the requirements of industrial production.
        Key words: wind power; power prediction; BP neural network; genetic algorithm
     
    參考文獻
    [1] CHEN Daojun,GONG Qingwu,ZOU Bichang,et al. A low-carbon dispatch model in a wind power integrated system considering wind speed forecasting and energy-environmental efficiency[J].Energies,2012,5(4):1245-1270.
    [2] 黎靜華,桑川川,甘一夫,等. 風電功率預測技術研究綜述[J]. 現代電力,2017,34(3):1-11.
    [3] 陳道君,龔慶武,金朝意,等. 基于自適應擾動量子粒子群算法參數優化的支持向量回歸機短期風電功率預測[J]. 電網技術,2013,37(4):974-980.
    [4] 何東,劉瑞葉. 基于主成分分析的神經網絡動態集成風功率超短期預測[J]. 電力系統保護與控制,2013,41(4):50-54.
    [5] 袁鐵江,晁勤,李義巖,等. 大規模風電并網電力系統經濟調度中風電場出力的短期預測模型[J].中國電機工程學報,2010,30(13):23-27.
    [6] 黃辰,吳峻青. 基于人工神經網絡的短期風電功率預測[J]. 華東電力,2014,42(7):1408-1410.
    [7] 范高峰,王偉勝,劉純. 基于人工神經網絡的風電功率短期預測系統[J]. 電網技術,2008,32(22):72-76.
    [8] 李剛,吳潮,趙建平. 基于改進果蠅神經網絡的短期風電功率預測[J]. 測控技術,2018,37(7):23-31.
    [9] 楊志凌,劉永前. 應用粒子群優化算法的短期風電功率預測[J]. 電網技術,2011,35(5):159-164.
    [10] 楊琦,張建華,王向峰,等. 基于小波- 神經網絡的風速及風力發電量預測[J]. 電網技術,2009,33(17):44-48.
    [11] 肖遷,李文華,李志剛,等. 基于改進的小波-BP神經網絡的風速和風電功率預測[J]. 電力系統保護與控制,2014,42(15):80-86.
    [12] 劉純,范高峰,王偉勝,等. 風電場輸出功率的組合預測模型[J]. 電網技術,2009,33(13):74-79.
    [13] 彭小圣,熊磊,文勁宇,等. 風電集群短期及超短期功率預測精度改進方法綜述[J]. 中國電機工程學報,2016,36(23):14-25.
    [14] BARBOUNIS T G, THEOCHARIS J B, ALEXIADIS M C, et al. Long-term wind speed and power forecasting using local recurrent neural network models[J].IEEE Transactions on Energy Conversion,2006,21(1):273-284.

     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();