<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號: CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁 >> 文章檢索 >> 文章瀏覽排名

    基于FOA-Elman神經網絡的光伏發電功率預測模型

    來源:電工電氣發布時間:2019-12-19 10:19 瀏覽次數:583
    基于FOA-Elman神經網絡的光伏發電功率預測模型
     
    李蕓,李萍,麻利新
    (寧夏大學 物理與電子電氣工程學院,寧夏 銀川 750021)
     
        摘 要:光伏發電功率對光伏發電的可靠性起著決定性作用。針對Elman神經網絡收斂速度慢、訓練時間較長的問題,利用果蠅算法(FOA)來優化Elman神經網絡的權值和閾值,從而提高運行效率。建立了基于FOA-Elman神經網絡的光伏發電功率預測模型,并給出了算法設計及編碼方案。仿真實驗結果表明,FOA-Elman模型預測精度比傳統Elman神經網絡模型預測精度高,更適合于光伏發電功率預測。
        關鍵詞:光伏發電;功率預測;果蠅算法;Elman 神經網絡;預測精度
        中圖分類號:TM615     文獻標識碼:A     文章編號:1007-3175(2019)12-0001-04
     
    Prediction Model of Photovoltaic Power Generation Based on FOA-Elman Neural Network
     
    LI Yun, LI Ping, MA Li-xin
    (School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China)
     
        Abstract: The photovoltaic power generation plays an important role in the reliability of photovoltaic power system.Aiming at the slow convergence speed and long training time of Elman neural network, this paper used the fruit fly optimization algorithm (FOA) to optimize the weights and thresholds of Elman neural network to improve the operation efficiency. A photovoltaic power prediction model based on FOAElman neural network was established, and the algorithm, design and coding scheme were given. The simulation results show that the prediction accuracy of FOA-Elman model is higher than that of traditional Elman neural network model, more suitable for the photovoltaic power prediction.
        Key words: photovoltaic power generation; power prediction; fruit fly optimization algorithm; Elman neural network; prediction accuracy
     
    參考文獻
    [1] 段然. 光伏發電儲能系統研究[D]. 徐州:中國礦業大學,2016.
    [2] 程啟明,李明,陳根,等. 小型離網光伏發電系統的設計[J]. 上海電力學院學報,2014,30(3):199-202.
    [3] 張星. 并網光伏發電系統建模及其參數辨識技術研究[D]. 合肥:合肥工業大學,2018.
    [4] 王可舜. 關于風力發電與光伏發電并網問題的探討[J]. 自動化應用,2016(5):75-76.
    [5] 楊育剛. 基于光伏發電與負荷預測的微電網儲能系統控制策略研究[D]. 保定:華北電力大學,2015.
    [6] MORENO-MUNOZ A, ROSA J J, LOPEZ M A,et al. Grid interconnection of renewable energy sources: Spanish legislation[J].Energy for Sustainable Development,2010,14(2):104-109.
    [7] BENTH F E, IBRAHIM N A.Stochastic modeling of photovoltaic power generation and electricity prices[J].Journal of Energy Markets,2017,10(3):1-33.
    [8] 周同旭,周松林. 光伏發電功率區間概率預測[J].銅陵學院學報,2017(2):108-110.
    [9] 楊書佺. 果蠅算法在電力通信光纖網絡恢復優化中的應用[J]. 信息與電腦,2017(22):65-67.
    [10] 徐杏芳. 基于果蠅算法優化的BP 神經網絡[J]. 福建電腦,2017,33(6):27-28.

     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();