鋁合金電纜與銅電纜過載暫態溫升過程對比分析
劉杰1,梁經龍1,郝靜亮1,黃位華1,張延輝2,藍磊2,王羽2
(1 中國能源建設集團山西省電力勘測設計院有限公司,山西 太原 030073;2 武漢大學 電氣與自動化學院,湖北 武漢 430072)
摘 要:以常見的水平排布的直埋單芯電纜為例,采用通過暫態熱路法和有限元法,在等載流量情況下,計算兩種電纜在突然過載后由90 ℃的穩態運行情況暫態向105 ℃的穩態過渡過程中的熱時間常數,結果表明:相同的載流量時鋁合金電纜的熱時間常數大于銅電纜,即通過相同的時間,鋁合金電纜的溫升低于銅纜,暫態熱路法和有限元法計算結果接近,過載情況下鋁合金電纜具有較為優良的性能。
關鍵詞:鋁合金電纜;銅電纜;暫態過程;熱時間常數
中圖分類號:TM247 文獻標識碼:A 文章編號:1007-3175(2020)02-0027-04
Comparative Analysis of Transient Temperature Rise Process of Aluminum Alloy Cable and Copper Cable
LIU Jie1, LIANG Jing-long1, HAO Jing-liang1, HUANG Wei-hua1, ZHANG Yan-hui2, LAN Lei2, WANG Yu2
(1 Shanxi Electric Power Survey and Design Institute Co., Ltd, China Energy Engineering Group Co., Ltd, Taiyuan 030073, China;
2 School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)
Abstract: Taking a common horizontally-displaced single-core cable for example, this paper adopted the steady-state thermal path method and the finite element method to calculate the thermal time constant of two kinds of cables in the transition process from the steady-state operation at 90 °C to the steady-state operation at 105 °C after the sudden overload under the same current carrying capacity conditions. The result shows that the thermal time constant of the aluminum alloy cable is greater than that of the copper cable under the same current carrying capacity, that is, the temperature rise of the aluminum alloy cable is lower than that of the copper cable through the same time. The calculation results of transient thermal path method are close to the finite element method and the aluminum alloy cable has better performance under overload conditions.
Key words: aluminum alloy cable; copper cable; transient process; thermal time constant
參考文獻
[1] 謝莉杰. 鋁合金電纜發展趨勢及應用的研究[J]. 質量技術監督研究,2018(1):25-29.
[2] 鄭雁翎,王寧,李洪杰,等. 電力電纜載流量計算的方法與發展[J]. 電氣應用,2010,29(3):26-31.
[3] International Electrotechnical Commission. Calculation of the current rating of electric cables, part1:current rating equations(100% load factor) and calculation of losses, section1: general: IEC 60287-1-1-2006[S]. Geneva: International Electrotechnical Commission Publication,2006:11-24.
[4] International Electrotechnical Commission. Calculation of the current rating of electric cables, part2: thermal resistance, section1: general: IEC 60287-2-1-2006[S]. Geneva: International Electrotechnical Commission Publication,2006:19-39.
[5] International Electrotechnical Commission.Calculation of the cyclic and emergency current rating of cables, part2:cyclic rating of cables greater than 18/30(36) kV and emergency ratings for cables of all voltages:IEC 60853-2-2008[S].Geneva:International Electrotechnical Commission Publication,2008:24-31.
[6] 劉毅剛,羅俊華. 電纜導體溫度實時計算的數學方法[J]. 高電壓技術,2005,31(5):52-54.
[7] 雷成華. 高壓單芯電纜動態增容的理論分析與實驗研究[D]. 廣州:華南理工大學,2012.
[8] 傅晨釗,司文榮,祝令瑜,等. 土壤直埋單芯電纜暫態溫升計算模型的研究[J]. 高壓電器,2018,54(1):158-163.
[9] 王鵬.10 kV三芯電纜及附件線芯溫度計算與實驗研究[D]. 廣州:華南理工大學,2016.
[10] 殷瀟波.110 kV以上高壓電纜敷設周期性載流量研究[D]. 上海:上海交通大學,2010.
[11] 王有元,陳仁剛,陳偉根,等. 有限元法計算地下電纜穩態溫度場及其影響因素[J]. 高電壓技術,2009,35(12):3086-3092.
[12] 張堯,周鑫,牛海清,等. 單芯電纜熱時間常數的理論計算與試驗研究[J]. 高電壓技術,2009,35(11):2801-2806.