基于改進(jìn)NSGA-Ⅱ的考慮負(fù)載率指標(biāo)的風(fēng)電接入電網(wǎng)規(guī)劃
王軒1,蔣海峰2,韓偉1,李峰1,雷文寶1,李海濤1,王冰冰2
(1 國網(wǎng)江蘇省電力有限公司淮安供電分公司, 江蘇 淮安 223002;2 南京理工大學(xué) 自動(dòng)化學(xué)院, 江蘇 南京 210094)
摘 要:為保證風(fēng)電接入電網(wǎng)的經(jīng)濟(jì)性和安全性,提出了基于機(jī)會(huì)約束的多目標(biāo)電網(wǎng)規(guī)劃模型。經(jīng)濟(jì)性目標(biāo)中包含了新建線路成本、網(wǎng)損和切負(fù)荷懲罰費(fèi)用。安全性目標(biāo)考慮了期望值潮流熵和某置信度下線路的負(fù)載率水平。針對傳統(tǒng)NSGA-算法的不足,采用基于個(gè)體支配等級(jí)的自適應(yīng)參數(shù)調(diào)整策略改進(jìn)了NSGA-Ⅱ,增加了最優(yōu)解集的多樣性且改進(jìn)了算法的收斂效果。以加入風(fēng)電場的18節(jié)點(diǎn)系統(tǒng)為算例,結(jié)果表明,該模型獲得的方案切負(fù)荷量較低,系統(tǒng)越限線路少,具有較高的可靠性和適應(yīng)性。
關(guān)鍵詞:風(fēng)電;負(fù)載率;期望值潮流熵;多目標(biāo)電網(wǎng)規(guī)劃;改進(jìn)NSGA-Ⅱ算法
中圖分類號(hào):TM715 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1007-3175(2020)07-0001-08
Multi-Objective Grid Planning Connected with Wind Farm Considering Load Rate Based on Improved NSGA-II Algorithm
WANG Xuan1, JIANG Hai-feng2, HAN Wei1, LI Feng1, LEI Wen-bao1, LI Hai-tao1, WANG Bing-bing2
(1 State Grid Huaian Power Supply Company, Huaian 223002, China;
2 School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)
Abstract: In order to ensure the economics and safety of wind power connected to the power grid, a multi-objective grid planning model based on chance constraints is proposed. The economic goals include the cost of newly constructed lines, network loss and load-shedding costs.The safety objective takes into account the expected power flow entropy and the load factor level of the line at a certain confidence level.In response to the shortcomings of the traditional NSGA-II algorithm, an adaptive parameter adjustment strategy based on individual dominance levels is used to improve NSGA-II, increase the diversity of optimal solution sets and improve the convergence effect of the algorithm. Taking an 18-bus system set on a wind farm as an example, the results show that the scheme obtained by this model has a lower loadshedding capacity, fewer lines beyond the system limit, and high reliability and adaptability.
Key words: wind power; load rate; expected value power flow entropy; multi-objective power grid planning; improved NSGA-II algorithm
參考文獻(xiàn)
[1] 田書欣,程浩忠,曾平良,等. 大型集群風(fēng)電接入輸電系統(tǒng)規(guī)劃研究綜述[J]. 中國電機(jī)工程學(xué)報(bào),2014,34(10):1566-1574.
[2] 張衡, 程浩忠, 曾平良, 等. 基于隨機(jī)優(yōu)化理論的輸電網(wǎng)規(guī)劃研究綜述[J]. 電網(wǎng)技術(shù),2017,41(10):3121-3129.
[3] MOREIRA A, POZO D, STREET A, et al.Reliable Renewable Generation and Transmission Expansion Planning: Co-Optimizing System's Resources for Meeting Renewable Targets[J]. IEEE Transactions on Power Systems,2017,32(4):3246-3257.
[4] 彭超鋒,袁鐵江,魏喜慧. 基于機(jī)會(huì)約束規(guī)劃的分散式風(fēng)電場優(yōu)化規(guī)劃[ J ] . 可再生能源,2016,34(3):427-436.
[5] JIN L, SUN Yuanzhang, SORENSEN P, et al. Method for Assessing Grid Frequency Deviation Due to Wind Power Fluctuation Based on “Time-Frequency Transformation”[J].IEEE Transactions on Sustainable Energy,2012,3(1):65-73.
[6] 劉自發(fā),于寒霄,王帥,等. 綜合考慮運(yùn)行效率和棄風(fēng)損失的輸電網(wǎng)規(guī)劃[J]. 電網(wǎng)技術(shù),2018,42(3):827-834.
[7] 劉學(xué),李暉,周明,等. 考慮風(fēng)速相關(guān)性的多目標(biāo)電網(wǎng)規(guī)劃[J]. 電力自動(dòng)化設(shè)備,2015,35(10):87-94.
[8] 許沛東,方華亮,黃爍. 考慮風(fēng)電消納及潮流均衡度的分散式風(fēng)電選址定容[J]. 電力建設(shè),2018,39(1):99-105.
[9] 姜惠蘭,安星,王亞微,等. 基于改進(jìn)NSGA2算法的考慮風(fēng)機(jī)接入電能質(zhì)量的多目標(biāo)電網(wǎng)規(guī)劃[J].中國電機(jī)工程學(xué)報(bào),2015,35(21):5405-5411.
[10] 時(shí)思思,張新燕,王志浩,等. 基于改進(jìn)NSGA-Ⅱ算法的風(fēng)光組合多饋入直流送端系統(tǒng)裝機(jī)容量優(yōu)化配置研究[J]. 可再生能源,2019,37(8):1198-1205.
[11] 張福民,崔海波,李占凱,等. 基于改進(jìn)NSGA-Ⅱ算法的微網(wǎng)交互式多目標(biāo)優(yōu)化[J]. 電力系統(tǒng)保護(hù)與控制,2018,46(12):24-31.
[12] 李勇,劉俊勇,劉曉宇,等. 基于潮流熵的電網(wǎng)連鎖故障傳播元件的脆弱性評(píng)估[J]. 電力系統(tǒng)自動(dòng)化,2012,36(19):11-16.
[13] 鄭強(qiáng). 帶精英策略的非支配排序遺傳算法的研究與應(yīng)用[D]. 杭州:浙江大學(xué),2006.
[14] MOEINI-AGHTAIE M, ABBASPOUR A, FOTUHIFIRUZABAD M.Incorporating Large-Scale Distant Wind Farms in Probabilistic Transmission Expansion Planning-PartⅠ: Theory and Algorithm[J].IEEE Transactions on Power Systems,2012,27(3):1585-1593.
[15] 王錫凡. 電力系統(tǒng)優(yōu)化規(guī)劃[M]. 北京:水利電力出版社,1990.