基于改進NSGA-Ⅱ的考慮負載率指標的風電接入電網規劃
王軒1,蔣海峰2,韓偉1,李峰1,雷文寶1,李海濤1,王冰冰2
(1 國網江蘇省電力有限公司淮安供電分公司, 江蘇 淮安 223002;2 南京理工大學 自動化學院, 江蘇 南京 210094)
摘 要:為保證風電接入電網的經濟性和安全性,提出了基于機會約束的多目標電網規劃模型。經濟性目標中包含了新建線路成本、網損和切負荷懲罰費用。安全性目標考慮了期望值潮流熵和某置信度下線路的負載率水平。針對傳統NSGA-算法的不足,采用基于個體支配等級的自適應參數調整策略改進了NSGA-Ⅱ,增加了最優解集的多樣性且改進了算法的收斂效果。以加入風電場的18節點系統為算例,結果表明,該模型獲得的方案切負荷量較低,系統越限線路少,具有較高的可靠性和適應性。
關鍵詞:風電;負載率;期望值潮流熵;多目標電網規劃;改進NSGA-Ⅱ算法
中圖分類號:TM715 文獻標識碼:A 文章編號:1007-3175(2020)07-0001-08
Multi-Objective Grid Planning Connected with Wind Farm Considering Load Rate Based on Improved NSGA-II Algorithm
WANG Xuan1, JIANG Hai-feng2, HAN Wei1, LI Feng1, LEI Wen-bao1, LI Hai-tao1, WANG Bing-bing2
(1 State Grid Huaian Power Supply Company, Huaian 223002, China;
2 School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)
Abstract: In order to ensure the economics and safety of wind power connected to the power grid, a multi-objective grid planning model based on chance constraints is proposed. The economic goals include the cost of newly constructed lines, network loss and load-shedding costs.The safety objective takes into account the expected power flow entropy and the load factor level of the line at a certain confidence level.In response to the shortcomings of the traditional NSGA-II algorithm, an adaptive parameter adjustment strategy based on individual dominance levels is used to improve NSGA-II, increase the diversity of optimal solution sets and improve the convergence effect of the algorithm. Taking an 18-bus system set on a wind farm as an example, the results show that the scheme obtained by this model has a lower loadshedding capacity, fewer lines beyond the system limit, and high reliability and adaptability.
Key words: wind power; load rate; expected value power flow entropy; multi-objective power grid planning; improved NSGA-II algorithm
參考文獻
[1] 田書欣,程浩忠,曾平良,等. 大型集群風電接入輸電系統規劃研究綜述[J]. 中國電機工程學報,2014,34(10):1566-1574.
[2] 張衡, 程浩忠, 曾平良, 等. 基于隨機優化理論的輸電網規劃研究綜述[J]. 電網技術,2017,41(10):3121-3129.
[3] MOREIRA A, POZO D, STREET A, et al.Reliable Renewable Generation and Transmission Expansion Planning: Co-Optimizing System's Resources for Meeting Renewable Targets[J]. IEEE Transactions on Power Systems,2017,32(4):3246-3257.
[4] 彭超鋒,袁鐵江,魏喜慧. 基于機會約束規劃的分散式風電場優化規劃[ J ] . 可再生能源,2016,34(3):427-436.
[5] JIN L, SUN Yuanzhang, SORENSEN P, et al. Method for Assessing Grid Frequency Deviation Due to Wind Power Fluctuation Based on “Time-Frequency Transformation”[J].IEEE Transactions on Sustainable Energy,2012,3(1):65-73.
[6] 劉自發,于寒霄,王帥,等. 綜合考慮運行效率和棄風損失的輸電網規劃[J]. 電網技術,2018,42(3):827-834.
[7] 劉學,李暉,周明,等. 考慮風速相關性的多目標電網規劃[J]. 電力自動化設備,2015,35(10):87-94.
[8] 許沛東,方華亮,黃爍. 考慮風電消納及潮流均衡度的分散式風電選址定容[J]. 電力建設,2018,39(1):99-105.
[9] 姜惠蘭,安星,王亞微,等. 基于改進NSGA2算法的考慮風機接入電能質量的多目標電網規劃[J].中國電機工程學報,2015,35(21):5405-5411.
[10] 時思思,張新燕,王志浩,等. 基于改進NSGA-Ⅱ算法的風光組合多饋入直流送端系統裝機容量優化配置研究[J]. 可再生能源,2019,37(8):1198-1205.
[11] 張福民,崔海波,李占凱,等. 基于改進NSGA-Ⅱ算法的微網交互式多目標優化[J]. 電力系統保護與控制,2018,46(12):24-31.
[12] 李勇,劉俊勇,劉曉宇,等. 基于潮流熵的電網連鎖故障傳播元件的脆弱性評估[J]. 電力系統自動化,2012,36(19):11-16.
[13] 鄭強. 帶精英策略的非支配排序遺傳算法的研究與應用[D]. 杭州:浙江大學,2006.
[14] MOEINI-AGHTAIE M, ABBASPOUR A, FOTUHIFIRUZABAD M.Incorporating Large-Scale Distant Wind Farms in Probabilistic Transmission Expansion Planning-PartⅠ: Theory and Algorithm[J].IEEE Transactions on Power Systems,2012,27(3):1585-1593.
[15] 王錫凡. 電力系統優化規劃[M]. 北京:水利電力出版社,1990.