超高壓線路絕緣架空地線感應電壓及其影響因素研究
李奇超,伍弘,楊凱,房子祎
(國網寧夏電力有限公司電力科學研究院,寧夏 銀川 750011)
摘 要:針對超高壓輸電線路絕緣架空地線上可能產生過大的感應電壓問題,以330 kV線路為例,采用有限元分析軟件對不同運行及檢修工況下絕緣架空地線上產生的感應電壓進行仿真,并根據仿真結果設計了一種專用于絕緣架空地線的新型接地裝置。經現場應用驗證表明,導、地線間距及導線排列方式、相序( 同塔雙回線路) 等是影響絕緣架空地線感應電壓大小的重要因素,且在線路不同工況下,絕緣架空地線上均可能產生較大感應電壓;所設計的接地裝置能在避免檢修人員電弧傷害的同時將絕緣架空地線可靠限制在地電位。
關鍵詞:高電壓技術;絕緣架空地線;有限元仿真;感應電壓;接地裝置
中圖分類號:TM755;TM862 文獻標識碼:A 文章編號:1007-3175(2020)08-0017-05
Research on the Induced Voltage and Its Influencing Factors of Insulated Overhead Ground Wire for EHV Transmission Line
LI Qi-chao, WU Hong, YANG Kai, FANG Zi-yi
(State Grid Ningxia Electric Power Company Electric Power Research Institute, Yinchuan 750011 , China)
Abstract: Aiming at the problem of excessive induced voltage on insulated overhead ground wires of UHV transmission lines, in this paper, it takes 330 kV line as an example, and uses finite element analysis software to simulate and analyze the induced voltage generated on insulated overhead ground wires under different operating and maintenance working conditions, and devised a new kind of grounding device dedicated to the insulated overhead ground wires according to the simulation results. The results show that the distance between the conductor line and ground wire, the arrangement of the lines and the phase sequence (common-tower double-circuit line) are important factors that affecting the magnitude of the induced voltage of insulated overhead ground wires. The devised grounding device can reliably limit the insulated overhead ground wire to ground potential while avoiding the arc injury of maintenance personnel.
Key words: high voltage technique; insulated overhead ground wire; finite element simulation; induced voltage; grounding device
參考文獻
[1] 黃鑒. 西北電網750 kV電壓等級的合理確定[J].寧夏電力,2003(1):1-5.
[2] 中國電力企業聯合會. 交流輸電線路架空地線接地技術導則:DL/T 1519—2016[S]. 北京:中國電力出版社,2016:2-6.
[3] 徐明,趙俊霖,伍家潔. 架空地線電磁感應電流計算與仿真分析[J]. 西南師范大學學報(自然科學版),2019,44(10):49-53.
[4] LUO Yihua, REN Hongxin, HAN Qingjiang, et al. Analysis of Induced Voltage of Parallel UHV Double-circuit AC Transmission Lines[J]. IOP Conference Series Materials Science and Engineering,2018,452(3):032084.
[5] 胡科,陳國初.500 kV架空地線不同導線排列方式和損耗[J]. 上海電機學院學報,2018,21(1):33-38.
[6] DUDURYCH I, ROSOLOWSKI E. Analysis of overvoltages in overhead ground wires of extra high voltage(EHV) power transmission line under single-phase-to-ground faults[J]. Electric Power Systems Research,2000,53(2):105-111.
[7] 馬愛清,袁雪元. 降低地線感應電壓方法及絕緣間隙電壓分析[J]. 電瓷避雷器,2018(2):48-53.
[8] 馬燁,龔堅剛,郭潔,等.500 kV架空地線不同接地方式感應電量的比較[J]. 高壓電器,2016,52(5):176-180.
[9] 陳潔,郭潔,崔龍躍,等.330 kV OPGW感應電壓分布計算和影響因素研究[J]. 高壓電器,2014,50(5):93-98.
[10] 李燕軍,孟令增,王東育,等.750 kV雙回輸電線路架空地線接地方式分析研究[J]. 電氣技術,2015(5):82-84.
[11] 王倩,吳田,施榮,等.750 kV輸電線路光纖復合架空地線的接地方式[J]. 高電壓技術,2011,37(5):1274-1280.
[12] 李剛,胡元潮,劉斌,等. 不同接地方式下地線電位分布與損耗分析[J]. 山東理工大學學報(自然科學版),2019,33(2):17-23.
[13] 國家電網公司安全監察質量部. 電力安全工作規程線路部分:Q/GDW 1799.2—2013[S]. 北京:中國電力出版社,2014:27-28.
[14] 李寶聚,周浩.1 000 kV同塔雙回線路感應電壓和電流的計算分析[J]. 電網技術,2011,35(3):14-19.
[15] 祝永坤,楊永保,陳晶,等.500 kV輸電線路絕緣架空地線并聯間隙放電原因分析及防范措施[J].內蒙古電力技術,2018,36(3):29-32.
[16] 彭向陽,毛先胤,胡衛,等. 輸電線路架空地線節能接地技術[J]. 電力建設,2014,35(8):84-90.