差分進化鳥群算法的微電網多目標優化運行
薛陽1,李蕊1,張寧1,王琳2
(1 上海電力大學 自動化工程學院,上海 200090;2 國網上海市電力公司,上海 200122)
摘 要:為提高微電網在安全可靠前提下調度運行的經濟性和環保性,提出了一種基于差分進化鳥群算法的微電網多目標優化運行策略。建立了考慮經濟性、環保性及供電可靠性等因素的微電網多目標模型,并給出了滿足微電網安全穩定運行所需的約束條件;將多目標函數轉換為單目標函數,應用差分進化鳥群算法對其進行求解;將所得結果分別與各單目標下求解結果進行對比。實驗結果表明,所提方法在經濟性和環保性上較傳統模型均有所提高,更充分利用可再生能源,降低系統運行成本,并且在負荷變動明顯的情況下,系統波動性較小,一定程度上提高系統穩定性;同時該組合算法增加了種群的多樣性,防止訓練過程陷入局部最優解,具有效率高、魯棒性好的優點。
關鍵詞:微電網;多目標;優化運行;差分進化算法;鳥群算法
中圖分類號:TM711 文獻標識碼:A 文章編號:1007-3175(2020)08-0001-06
Multi-Objective Optimal Operation of Micro-Grid Based on Differential Evolutionary Bird Swarm Algorithm
XUE Yang1, LI Rui1, ZHANG Ning 1, WANG Lin2
(1 College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China;
2 State Grid Shanghai Electric Power Company, Shanghai 200122, China)
Abstract: In order to improve the economics and environment friendly of micro-grid dispatching operation under the premise of safety and reliability, a multi-objective optimization operation strategy for micro-grid based on differential evolution bird swarm algorithm is proposed. In this paper, it established a micro-grid multi-objective model that considers factors such as economy, environment friendly, and power supply reliability, and gave the constraints required to meet the safe and stable operation of the micro-grid, the multi-objective function is converted into a single-objective function, and the differential evolution bird swarm algorithm is used to solve it; the obtained results are compared with the solution results under each single-objective. The experimental results show that the proposed method is improved in economy and environmental protection compared with the traditional model, making full use of renewable energy, reducing system operating costs, and under the condition of obvious load fluctuations, the system volatility is small, and to a certain extent, the stability of the system is improved. At the same time, the combined algorithm increases the diversity of the population and prevents the training process from falling into the local optimal solution. It has the advantages of high efficiency and good robustness.
Key words: micro-grid; multi-objective; optimal operation; differential evolutionary algorithm; bird swarm algorithm
參考文獻
[1] 吳雄,王秀麗,劉世民,等. 微電網能量管理系統研究綜述[J]. 電力自動化設備,2014,34(10):7-14.
[2] 張翔宇, 李丹, 張予燮, 等. 計及儲能系統的微電網優化調度模型[J]. 水電能源科學,2017,35(11):203-206.
[3] 郭志忠,葉瑞麗,劉瑞葉,等. 含抽水蓄能電站的可再生能源電網優化調度策略[ J ] . 電力自動化設備,2018,38(3):7-15.
[4] EVANGELOPOULOS V A, GEORGILAKIS P S.Optimal Distributed Generation Placement Under Uncertainties Based on Point Estimate Method Embedded Genetic Algorithm[J].IET Generation Transmission & Distribution,2014,8(3):389-400.
[5] GANIVADA P K, VENKAIAH C.Optimal Placement and Sizing of Multi Distributed Generators Using Teaching and Learning Based Optimization[C]//2014 International Conference on Smart Electric Grid (ISEG),2014:1-6.
[6] 王雅平,林舜江,楊智斌,等. 微電網多目標隨機動態優化調度算法[J]. 電工技術學報,2018,33(10):2196-2207.
[7] 曾嶒,彭春華,王奎,等. 基于鳥群算法的微電網多目標運行優化[J]. 電力系統保護與控制,2016,44(13):117-122.
[8] 毛瑞龍,李春華. 基于petri網和粒子群算法的微電網優化運行[J]. 智慧電力,2018,46(10):96-102.
[9] 高佳,肖迎群. 風、光、燃、儲多源互補微電網的日優化運行[J]. 科學技術與工程,2019,19(15):136-142.
[10] 錢超,周志華. 基于分解策略的多目標演化子集選擇算法[J]. 中國科學:信息科學,2016,46(9):1276-1287.
[11] 楊毅,雷霞,葉濤,等. 考慮安全性與可靠性的微電網電能優化調度[J]. 中國電機工程學報,2014,34(19):3080-3088.
[12] 趙磊,曾芬鈺,王霜,等. 基于經濟性與環保性的微電網多目標優化調度研究[J]. 高壓電器,2015,51(6):127-132.
[13] MENG X B, GAO X Z, LU L, et al.A New Bio-Inspired Optimization Algorithm:Bird Swarm Algorithm[J].Journal of Experimental & Theoretical Artificial Intelligence,2016,28(4):1-15.
[14] 鄭建國,陳克明,蔡萬剛. 基于種群自適應調整的多目標差分進化算法[J]. 運籌與管理,2017,26(6):29-34.