<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號: CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁 >> 文章檢索 >> 文章瀏覽排名

    一種基于小波變換和全變差的局部放電信號組合去噪法

    來源:電工電氣發布時間:2020-11-19 15:19 瀏覽次數:606
    一種基于小波變換和全變差的局部放電信號組合去噪法
     
    戴宇1,2,王錄亮1,3,楊旭4,5,張靜4,周思遠5,潘子君5,姚雨杭5
    (1 海南電網有限責任公司電力科學研究院,海南 ???570311;2 東北電力大學 建筑工程學院,吉林 吉林 132012;
    3 海南省電網理化分析重點實驗室,海南 ???570311;4 國網電力科學研究院武漢南瑞有限責任公司,湖北 武漢 430074;
    5 武漢大學 電氣與自動化學院,湖北 武漢 430072)
     
        摘 要:現場測量所得到的局部放電(Partial Discharge,PD)信號會被白噪聲污染,有必要對其進行去噪處理?;谛〔ㄗ儞Q閾值去噪和全變差去噪方法,提出一種小波閾值和全變差組合去噪算法。該算法將兩種方法進行融合,吸收了它們各自優點,有效減小PD信號由于小波閾值去噪而造成的波動誤差,并避免了全變差去噪引入的階梯誤差。通過對實驗數據進行計算驗證,將所提算法與已有方法進行了對比,結果證明了所提方法的優越性。
        關鍵詞:局部放電;去噪;小波變換;閾值去噪;全變差
        中圖分類號:TM866     文獻標識碼:A     文章編號:1007-3175(2020)11-0016-07
     
    Combined Partial Discharge Signal Denoising Algorithm Based on Wavelet Transform and Total Variation
     
    DAI Yu1,2, WANG Lu-liang1,3, YANG Xu4,5, ZHANG Jing4, ZHOU Si-yuan5, PAN Zi-jun5, YAO Yu-hang5
    (1 Electric Power Research Institute of Hainan Power Grid Limited Company, Haikou 570311 , China;
    2 School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012,China;
    3 Hainan Key Laboratory of Physical and Chemical Analysis of Power Grid, Haikou 570311 ,China;
    4 Wuhan NARI Limited Liability Company of State Grid Electric Power Research Institute, Wuhan 430074, China;
    5 School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)
     
        Abstract: On-site measurement partial discharge (Partial Discharge, PD) signal will be polluted by white noise, and it is necessary to denoise it. Based on wavelet transform threshold denoising and total variation denoising method, a combined wavelet threshold and total variation denoising algorithm is proposed. The algorithm merges the two methods, absorbs their respective advantages, effectively reduces the fluctuation error of the PD signal due to wavelet threshold denoising, and avoids the step error introduced by the total variation denoising. By calculating and verifying the experimental data, the proposed algorithm is compared with the existing method, and the result proves the superiority of the proposed method.
        Key words: partial discharge; denoising; wavelet transform; threshold denoising; total variation
     
    參考文獻
    [1] 黃超,魏本剛,任曉明,等. 基于不同放電模型的變壓器局部放電光學特性研究[J]. 電測與儀表,2016,53(20):108-113.
    [2] 唐炬,佘新,萬凌云,等. 負極性直流局部放電量與SF6分解過程的關聯特性[J].中國電機工程學報,2018,38(2):628-636.
    [3] 周瑋,張傳計,張軍,等. 局部放電UHF檢測儀校準方法研究[J]. 電測與儀表,2016,53(13):100-106.
    [4] 牛博,張欣宜,李亞峰,等. 基于特高頻法識別配電站房開關柜的局部放電類型研究[J]. 電測與儀表,2019,56(23):43-47.
    [5] 王永強,李長元,胡芳芳,等. 基于改進EMD的GIS局部放電特高頻信號降噪方法研究[J]. 電測與儀表,2017,54(9):1-5.
    [6] 代蕩蕩,王先培,龍嘉川,等. 基于改進Protrugram和小波變換的超高頻局部放電信號去噪方法[J].高電壓技術,2018,44(11):3577-3586.
    [7] 周凱,黃永祿,謝敏,等. 短時奇異值分解用于局放信號混合噪聲抑制[J]. 電工技術學報,2019,34(11):2435-2443.
    [8] LI J, CHENG C, JIANG T, et al. Wavelet denoising of partial discharge signals based on genetic adaptive threshold estimation[J]. IEEE Transactions on Dielectrics & Electrical Insulation,2012,19(2):543-549.
    [9] 張曉星,周君杰,李楠,等. 抑制局部放電白噪聲的分塊閾值空域相關聯合去噪法[J]. 高電壓技術,2011,37(5):1142-1148.
    [10] 葉會生,陳曉林,周挺,等. 提升雙樹復小波在GIS局部放電監測白噪聲抑制的應用[J]. 高電壓技術,2017,43(3):851-858.
    [11] WEICKERT T, BENJAMINSEN C, KIENCKE U.Analytic wavelet packets-combining the dual-tree approach with wavelet packets for signal analysis and filtering[J].IEEE Transactions on Signal Processing,2009,57(2):493-502.
    [12] SELESNICK I W, BARANIUK R G, KINGSBURY N C.The dual-tree complex wavelet transform[J].IEEE Signal Processing Magazine,2005,22(6):123-151.
    [13] SELESNICK I W.The design of approximate Hilbert transform pairs of wavelet bases[J]. IEEE Transactions on Signal Processing,2002,50(5):1144-1152.
    [14] SELESNICK I W.Hilbert transform pairs of wavelet bases[J].IEEE Signal Processing Letters,2001,8(6):170-173.
    [15] 解頤. 基于多尺度分析的全變差去噪和壓縮感知研究[D]. 北京:北京交通大學,2017.
    [16] 張雨. 基于全變差的圖像融合與乘性去噪方法研究[D]. 哈爾濱:哈爾濱工業大學,2018.
    [17] DONOHO D L.Denoising by soft-thresholding[J]. IEEE Transactions on Information Theory,1995,41(3):613-627.
    [18] 張賢達. 現代信號處理[M].3 版. 北京:清華大學出版社,2002.
    [19] RUDIN L I, OSHER S, FATEMI E.Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena,1992,60(1):259-268.
    [20] OTTERSTEN J, WAHLBERG B, ROJAS C R.Accurate Changing Point Detection for l1 Mean Filtering[J].IEEE Signal Processing Letters,2016,23(2):297-301.
    [21] FIGUEIREDO M A T, BIOUCAS-DIAS J M, NOWAK R D. Majorization-minimization algorithms for wavelet-based image restoration[J].IEEE Transactions on Image Processing,2007,16(12):2980-2991.
    [22] 唐炬,張曉星,曾福平. 組合電器設備局部放電特高頻監測與故障診斷[M]. 北京:科學出版社,2016.

     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();