<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號: CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁 >> 文章檢索 >> 文章瀏覽排名

    電磁繼電器剩余電壽命智能預測研究

    來源:電工電氣發布時間:2020-12-19 13:19 瀏覽次數:608
    電磁繼電器剩余電壽命智能預測研究
     
    喬維德
    (無錫開放大學 科研與質量控制處,江蘇 無錫 214011)
     
        摘 要:針對以往繼電器剩余電壽命實際預測方法存在的不足,建立一種用于電磁繼電器剩余電壽命預測的BP神經網絡模型,該模型采取繼電器的吸合時間和超程時間作為輸入量,繼電器剩余電壽命作為輸出量,通過粒子群- 蛙跳算法優化網絡結構初始參數,利用改進BP算法訓練BP神經網絡,并加以測試驗證。實驗結果表明,經過粒子群- 蛙跳算法優化的BP神經網絡模型能快速、準確地實現電磁繼電器剩余電壽命預測。
        關鍵詞:電磁繼電器;BP神經網絡;粒子群- 蛙跳算法;剩余電壽命預測
        中圖分類號:TM581.3     文獻標識碼:A     文章編號:1007-3175(2020)12-0030-05
     
    Research on Intelligent Prediction of Residual Electrical Life of Electromagnetic Relay
     
    QIAO Wei-de
    (Scientific Research and Quality Control Department, Wuxi Open University, Wuxi 214011, China)
     
        Abstract: Aiming at the shortcomings of the previous actual prediction methods of the remaining electrical life of the relay, a BP neural network model for the prediction of the remaining electrical life of the electromagnetic relay was established. The model takes the pull-in time and overtravel time of the relay as the input, and the remaining electrical life of the relay as the output. The initial parameters of the network structure are optimized by the particle swarm-frog leaping algorithm, and the BP neural network is trained by the improved BP algorithm, and tested and verified. Experimental results show that the BP neural network model optimized by the particle swarm-frog leaping algorithm can quickly and accurately predict the remaining electrical life of the electromagnetic relay.
        Key words: electromagnetic relay; BP neural network; particle swarm-frog leaping algorithm; residual electrical life prediction
     
    參考文獻
    [1] 王佳煒,王召斌,黃周霖. 繼電器壽命預測方法綜述[J]. 電器與能效管理技術,2018(4):1-5.
    [2] 王佳煒,王召斌,黃周霖. 果蠅算法優化的BP神經網絡在電磁繼電器貯存壽命預測中的應用[J].電器與能效管理技術,2019(2):19-24.
    [3] 苗建偉,王文軍,李斌. 低壓繼電器壽命的智能預測分析[J]. 電器與能效管理技術,2018(4):61-65.
    [4] 喬維德. 基于BP神經網絡的機電產品綠色度評價方法[J]. 溫州職業技術學院學報,2017,17(2):33-37.
    [5] 張菲菲,李志剛. 基于BP神經網絡的繼電器剩余壽命預測[J]. 低壓電器,2012(1):11-14.
    [6] 喬維德. 粒子群蛙跳模糊神經網絡的PMSM轉速控制器設計[J]. 微特電機,2019,47(3):66-69.
    [7] 喬維德. 基于AHP和BP神經網絡的翻轉課堂教學質量評價模型[J]. 溫州職業技術學院學報,2018,18(4):57-64.
    [8] 喬維德. 基于BP神經網絡模型的壓力傳感器溫度補償[J]. 淮陰師范學院學報( 自然科學版),2019,18(4):322-327.
    [9] 喬維德. 高職院??蒲锌冃гu價模型研究[J]. 高等職業教育探索,2020,19(2):24-29.

     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();