基于小波系數PCA和SaDE-ELM的電能質量擾動信號分類
薛正愛1,黃陳蓉2,張建德2,支昊1,顧飛1
(1 南京工程學院 電氣工程學院,江蘇 南京 211167;
2 南京工程學院 計算機工程學院,江蘇 南京 211167)
摘 要:電能質量擾動信號分類是電能質量綜合治理的前提,為提高分類精度,提出一種基于主成分分析(PCA) 和自適應差分進化(SaDE) 優化的極限學習機(ELM) 的電能質量擾動信號分類方法。對 8 種擾動信號用 db4 小波進行 10 層多分辨分解,與標準能量信號的能量差系數作為特征向量,PCA 對其降維處理,去除冗余特征,得到 4 維數據作為分類的樣本數據集,利用 SaDE 算法對 ELM 的輸入權值和隱含層節點偏置優化。通過仿真實驗表明,提出的 SaDE-ELM 識別準確率更高,抗噪性更強,更適應于電能質量擾動分類。
關鍵詞:電能質量;多分辨分解;主成分分析;自適應差分進化;極限學習機
中圖分類號:TM711 文獻標識碼:A 文章編號:1007-3175(2021)04-0006-05
Power Quality Disturbance Signal Classification Based on PCA and SaDE-ELM
XUE Zheng-ai1, HUANG Chen-rong2, ZHANG Jian-de2, ZHI Hao1, GU Fei1
(1 School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
2 School of Computer Engineering, Nanjing Institute of Technology, Nanjing 211167, China)
Abstract: Power quality disturbance signal classification is the premise of comprehensive power quality control. In order to improve the classification accuracy, this paper proposes a method of power quality disturbance signal classification based on principal component analysis(PCA) and adaptive differential evolution (SaDE) optimization of extreme learning machine (ELM). The 8 kinds of disturbance signals are decomposed by db4 wavelet with 10 layers of multi-resolution, and the energy difference coefficient with the standard energy signal is used as the feature vector, and PCA is used to reduce the dimensionality, redundant features are removed, and 4-dimensional data is obtained as a sample data set for classification. The SaDE algorithm is used to optimize the input weights and hidden layer node bias of ELM. Simulation experiment, the proposed SaDE-ELM has higher recognition accuracy, stronger noise resistance and it is more suitable for power quality disturbance classification.
Key words: power quality; multiresolution decomposition; principal component analysis; adaptive differential evolution; extreme learning machine
參考文獻
[1] 潘從茂,李鳳婷.基于小波變換的暫態電能質量的檢測與識別[J]. 電測與儀表,2013,50(11) :69-72.
[2] 何智龍,蘇娟,覃芳. S 變換在電能質量擾動中的分析[J]. 電測與儀表,2015,52(22) :25-30.
[3] 占勇,程浩忠,丁屹峰,等. 基于S 變換的電能質量擾動支持向量機分類識別[J] . 中國電機工程學報,2005,25(4) :51-56.
[4] 陳春玲,許童羽,鄭偉,等. 多類分類 SVM 在電能質量擾動識別中的應用[J] . 電力系統保護與控制,2010,38(13) :74-78.
[5] 俞曉冬,周欒愛. 基于改進 SVM 模型的電能質量擾動分類[J] . 電力系統保護與控制,2010,38(3) :15-19.
[6] KUMAR R , SINGH B , SHAHANI D T, et al. Recognition of power-quality disturbances using S-transform-based ANN classifier and rule-based decision tree[J].IEEE Transactions on Industry Applications,2015,51(2) :1249-1258.
[7] HUANG Guangbin, ZHOU Hongming, DING Xiaojian,et al.Extreme learning machine for regression and multiclass classification [J] . IEEE Transactions on Systems,2012,42(2) :513-529.
[8] 苑津莎,張利偉,王瑜,等. 基于極限學習機的變壓器故障診斷方法研究[J] . 電測與儀表,2013,50(12) :21-26.
[9] 李國華,李文悍. 基于差分進化算法的逆變器 SHEPWM 方法的研究[J] . 電力系統保護與控制,2019,47(17) :32-38.
[10] 瞿合祚,劉恒,李曉明,等. 一種電能質量多擾動分類中特征組合優化方法[J] . 電力自動化設備,2017,37(3) :146-152.