電網營銷資產配送需求計劃動態(tài)平衡研究
許杰雄,王江輝,顏思宇
(江蘇方天電力技術有限公司,江蘇 南京 210096)
摘 要:各省的電力公司計量中心需要設計完善的營銷資產配送需求計劃的體系結構來增強需求計劃的精確性,實現(xiàn)庫存、需求與配送之間的動態(tài)平衡,使營銷資源得到有效管理。通過分析傳統(tǒng)營銷資產的需求審批、資產配送存在的問題,提出了基于人工智能知識庫和推理機模塊的營銷資產配送需求計劃的業(yè)務流程編制方法,給出了基于人工智能的營銷資產配送需求計劃系統(tǒng)的結構方案,該方案可實現(xiàn)庫存、需求與配送之間的動態(tài)平衡,使營銷資源得到有效管理。
關鍵詞:營銷資產; 人工智能;配送需求計劃
中圖分類號:TM727 ;TP311.1 文獻標識碼:A 文章編號:1007-3175(2021)07-0063-05
Research on Dynamic Balance of Power Grid Marketing Assets
Distribution Demand Plan
XU Jie-xiong, WANG Jiang-hui, YAN Si-yu
(Jiangsu Fangtian Power Technology Co., Ltd, Nanjing 210096, China)
Abstract: Aiming at the dynamic balance among the inventory, demand and distribution of marketing assets, the measurement centers of electric power companies in every provinces need to design a complete systematic structure of marketing assets distribution demand plan to increase its accuracy, so that the marketing assets could be managed efficiently. By analyzing the existing problems of the used demand approval and asset distribution of marketing assets, a method to design business process is put forward which is based on artificial intelligence knowledge base and marketing assets distribution demand plan of reasoning module. Furthermore, a structure scheme based on artificial intelligence to establish the marketing assets distribution demand plan system is proposed, which could achieve the dynamic balance among inventory, demand and distribution and could manage marketing assets efficiently.
Key words: marketing assets; artificial intelligence; distribution demand plan
參考文獻
[1] 岳衡,駱國榮,薛娟萍. 電力物資智能配送實現(xiàn)路徑[J]. 物流技術,2020,39(5) :130-136.
[2] 何超. 探析信息化技術在電力資產管理中的應用[J]. 數(shù)字通信世界,2019(8) :185.
[3] 和軍梁,米晨旭,許爽,于仝,高小淇. 基于電力現(xiàn)貨市場風險管理的新能源電力現(xiàn)貨輔助決策系統(tǒng)設計[J]. 中外能源,2020(11) :28-33.
[4] 馬誠. 貴陽地鐵運營施工調度信息化系統(tǒng)計劃功能需求分析[J]. 中國新通信,2020(13) :105.
[5] 鄧晨曦,蔣一鋤. 試論自動化控制中人工智能算法的應用[J] . 科技創(chuàng)新與應用,2020(32) :164-165.
[6] 韓海軒. 人工智能技術對物流業(yè)效率的影響及差異性分析[J]. 商業(yè)經濟研究,2020(22) :105-108.
[7] 王青松,姜富山,李菲. 大數(shù)據環(huán)境下基于關聯(lián)規(guī)則的多標簽學習算法[J] . 計算機科學,2020(5) :90-95.