基于BP神經網絡模型的異步電動機故障辨識
喬維德
(無錫開放大學 科研與質量控制處,江蘇 無錫 214011)
摘 要:針對目前三相異步電動機故障診斷方法存在的局限性及其缺陷,在利用小波包分析提取電動機故障信號特征量基礎上,提出基于蝙蝠-粒子群及改進 BP 算法的異步電動機 BP 神經網絡故障辨識模型,采用蝙蝠-粒子群算法優化 BP 神經網絡結構參數,利用改進 BP 算法訓練 BP 神經網絡。仿真結果分析表明,該 BP 神經網絡模型用于三相異步電動機故障辨識,辨識速度快、準確度高、可靠性好。
關鍵詞:異步電動機;小波包分析;蝙蝠-粒子群算法;改進 BP 算法;故障辨識
中圖分類號:TM307 ;TM343+.2 文獻標識碼:A 文章編號:1007-3175(2021)08-0006-05
Asynchronous Motor Fault Identification Based on BP Neural Network Model
QIAO Wei-de
(Scientific Research and Quality Control Division, Wuxi Open University, Wuxi 214011,China)
Abstract: In view of the limitations and deficiencies of current three-phase asynchronous motor fault diagnosis methods, based on the use of wavelet packet analysis to extract the characteristics of the motor fault signal, a fault identification model of asynchronous motor BP neural network based on bat-particle swarm and improved BP algorithm is proposed. The bat-particle swarm algorithm is used to optimize the structural parameters of the BP neural network, and the improved BP algorithm is used to train the BP neural network. The analysis of simulation results shows that the BP neural network model is used for fault identification of three-phase asynchronous motors, with fast identification speed, high accuracy and good reliability.
Key words: asynchronous motor; wavelet packet analysis; bat-particle swarm algorithm; improved BP algorithm; fault identification
參考文獻
[1] 賀穎,王志蘭,李盼,等. BP 神經網絡在異步電機轉子故障診斷中的應用[J] . 電力學報,2015,30(6) :495-499.
[2] 喬維德. 一種電機故障的智能診斷方法研究[J] .電氣傳動自動化,2010,32(1) :43-45.
[3] 喬維德. 基于改進粒子群混合算法的電機故障診斷研究[J]. 江蘇電器,2007(4) :21-24.
[4] 張瑞祥,趙車紅,胡永勝. 小波包在異步電機轉子斷條故障檢測中的應用[J] . 自動測量與控制,2006,25(9) :68-69.
[5] 喬維德. 螢火蟲-粒子群優化神經網絡的異步電機轉子斷條故障診斷[J] . 電機與控制應用,2017,44(1) :83-88.
[6] 喬維德. 用于電動汽車電池 SOC 預測的 BP 神經網絡模型[J] . 石家莊學院學報,2018,20(3) :31-37.
[7] 李強,車文龍. 基于改進粒子群優化神經網絡的電機故障診斷[J] . 電氣傳動,2020,50(1) :103-108.