<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號: CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁 >> 文章檢索 >> 往年索引

    遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡的電能質量預測預警研究

    來源:電工電氣發(fā)布時間:2021-09-18 12:18 瀏覽次數(shù):533

    遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡的電能質量預測預警研究

    武晨晨1,苗霽1,祝佳楠1,張文惠2
    (1 國網(wǎng)江蘇省電力有限公司宿遷供電分公司,江蘇 宿遷 223800;
    2 南京理工大學 自動化學院,江蘇 南京 210094)
     
        摘 要:電能質量穩(wěn)態(tài)指標的預測和預警對于優(yōu)化電網(wǎng)運行方式具有重要意義。以某監(jiān)測點為研究對象,根據(jù)該監(jiān)測點的歷史天氣信息、有功功率、無功功率和電能質量數(shù)據(jù),使用遺傳算法改進 BP 神經(jīng)網(wǎng)絡,構建復合型神經(jīng)網(wǎng)絡預測系統(tǒng)。給出了電能質量分等級預警方式,通過模糊聚類合理靈活地設置閾值并給出電能質量預警信息,以適應不同場合的預警。算例驗證證明了該方法的有效性與實用性。
        關鍵詞:電能質量;遺傳算法;BP 神經(jīng)網(wǎng)絡;預測;預警;模糊聚類
        中圖分類號:TM933.4     文獻標識碼:A     文章編號:1007-3175(2021)09-0018-05
     
    Power Quality Prediction and Warning Based on BP
    Neural Network Optimized by Genetic Algorithm
     
    WU Chen-chen1, MIAO Ji1, ZHU Jia-nan1, ZHANG Wen-hui2
    (1 State Grid Jiangsu Electric Power Co., Ltd Suqian Power Supply Branch, Suqian 223800, China;
    2 School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)
     
        Abstract: The prediction and warning of power quality steady state indices is of great significance to optimize the operation of power grid.In this paper, a certain monitoring point is taken as the research object and the data about its historical weather information, active power, reactive power and power quality are performed., The genetic algorithm is utilized to improve the BP neural network and a complex neural network prediction system is constructed accordingly. This prediction system could warn by the grades of power quality and could set threshold value reasonably and flexibly by the use of fuzzy clustering aiming at giving warning information which is available for various situations. In the end ,this method is verified effective and practical by an example.
        Key words: power quality; genetic algorithm; BP neural network; prediction; warning; fuzzy clustering
     
    參考文獻
    [1] SONG J, XIE Z, ZHOU J, et al.Power quality indexes prediction based on cluster analysis and support vector machine[J].CIRED-Open Access Proceedings Journal,2017(1) :814-817.
    [2] 李君衛(wèi), 湯亞芳, 郝正航, 等. 聚類分析及其在電力系統(tǒng)中的應用綜述[J] . 現(xiàn)代電力,2019,36(3) :1-10.
    [3] 林順富,湯繼開,湯波,等. 典型電能質量 z 穩(wěn)態(tài)指標預測模型研究[J] . 電網(wǎng)技術,2018,42(2) :614-620.
    [4] 趙秀平. 基于多種預測方法的電能質量預警機制研究與實現(xiàn)[D]. 北京:華北電力大學,2016.
    [5] 劉建華,劉艷梅,馮純純,等. 基于 k 中心點聚類的穩(wěn)態(tài)電能質量預警閾值研究[J] . 電測與儀表,2018,55(23) :41-45.
    [6] ZEJUN D, PING L, SEN O, et al.Mechanism of Power Quality Forecast and Early Warning and Their Application[J].Proceedings of the CSUEPSA,2015,27(10) :87-92.
    [7] 丁澤俊,劉平,歐陽森,等. 電能質量預測與預警機制及其應用[J] . 電力系統(tǒng)及其自動化學報,2015,27(10) :87-92.
    [8] 盧玨,孫云蓮,謝信霖,等. 基于改進組合預測的電能質量預警研究[J] . 電工電能新技術,2020,39(9) :65-73.
    [9] 蘇衛(wèi)衛(wèi),馬素霞,齊林海. 基于 ARIMA 和神經(jīng)網(wǎng)絡的電能質量穩(wěn)態(tài)指標預測[J] . 計算機技術與發(fā)展,2014,24(3) :163-167.
    [10] 王芳,顧偉,袁曉冬,等. 面向智能電網(wǎng)的新一代電能質量管理平臺[J] . 電力自動化設備,2012,32(7) :134-139.
    [11] 王同勛,楊岑玉,彭傊,等. 一種電能質量預警系統(tǒng)及其方法:CN103647276A[P].2014-03-19.
    [12] 歐陽森,李奇,石怡理,等. 考慮模糊聚類特性的電能質量預警方法及其應用[J] . 電網(wǎng)技術,2014,38(6) :1712-1716.

     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();