<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號: CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁 >> 文章檢索 >> 文章瀏覽排名

    基于多維數據的線路電壓互感器在線監測技術研究

    來源:電工電氣發布時間:2022-07-18 13:18 瀏覽次數:361

    基于多維數據的線路電壓互感器在線監測技術研究

    徐衛東,何文志,廖肇毅,劉勤鋒
    (廣東電網有限責任公司東莞供電局,廣東 東莞 523000)
     
        摘 要:針對線路電壓互感器電壓波動受運行方式、負荷大小、線路長度等客觀因素的影響,從利用在線監測技術替代線路電壓互感器傳統停電預試進行研究。通過研究 110 kV 及以上輸電線路首末兩端電壓互感器實時采集數據,以及電壓偏差范圍,采用神經網絡算法對不同運行工況下的輸電線路電壓偏差進行自適應學習。結果表明,線路首末兩端電壓偏差符合正態分布曲線規律,神經網絡方法制定輸電線路首末兩端電壓互感器的告警規則更加合理,經故障案例驗證,證明線路首末兩端電壓互感器電壓閾值設定的準確性,完善了電壓互感器在線監測閾值設定的空缺。
        關鍵詞: 電壓互感器;神經網絡;誤差分析;在線監測
        中圖分類號:TM451     文獻標識碼:A     文章編號:1007-3175(2022)07-0050-06
     
    Research on Online Monitoring Technology of Line Voltage
    Transformer Based on Multi-Dimensional Data
     
    XU Wei-dong, HE Wen-zhi, LIAO Zhao-yi, LIU Qin-feng
    (Dongguan Power Supply Bureau of Guangdong Power Grid Co., Ltd, Dongguan 523000, China)
     
        Abstract: The voltage fluctuation of the line voltage transformer is affected by objective factors, such as operation mode, load size, line length, etc. This paper studied the perspective of using online monitoring technology to replace the traditional power failure pre-test technology of line voltage transformers. It collected real-time data and voltage deviation range by studying the initial and ending of the voltage transformer of 110 kV and above. Moreover, it used the neural network algorithm to self-adaptive learn the voltage deviation of the transmission line under different operating conditions.The results showed that the voltage deviation of the initial and ending of the circuit matched the normal distribution curve law, and the alarm rules formulated by the neural network method was more reasonable. The fault case verification proves the accuracy of the voltage threshold setting of the voltage transformers and completes the vacancy of the voltage transformer online monitoring threshold setting.
        Key words: voltage transformer; neural network; error analysis; online monitoring
     
    參考文獻
    [1] 韓海安,向鑫,王暉南,等. 電容式電壓互感器溫度特性研究[J]. 高壓電器,2021,57(5) :123-129.
    [2] 梁紀峰,何瑞東,焦亞東,等. 多判據融合的 CVT 諧波測量誤差現場驗證方法[J] . 電力電容器與無功補償,2021,42(2) :59-64.
    [3] 林景福,黃濤,任重. 一起 110 kV 電容式電壓互感器缺陷分析[J]. 寧夏電力,2021(1) :66-69.
    [4] 喬亞軍,林其雄,林李波.500 kV CVT 電磁單元過熱缺陷分析與處理[J] . 電力電容器與無功補償,2015,36(4) :61-63.
    [5] 李丐燕,張金強. 一例 500 kV CVT 電壓測量異常分析與處理[J].高壓電器,2008,44(1) :76-77.
    [6] 丁騫. 電容式電壓互感器電磁單元故障分析[J].廣西電力,2021,44(1) :95-100.
    [7] 溫曉陽,葉楠,徐文輝,等. 兩起電容式電壓互感器故障的分析與處理[J].黑龍江電力,2021,43(1) :81-84.
    [8] 王玲,馮宇,楊柳,等. 電容式電壓互感器諧波測量方法研究[J].電力電容器與無功補償,2021,42(1) :95-100.
    [9] 王維喆,艾博,田曉云. 二次電壓檢測法在電容式電壓互感器故障診斷中的應用[J].電工技術,2021(3) :98-101.
    [10] 楊金寶,張昌宏,陳平. 基于改進 BP 神經網絡的網絡故障診斷研究[J].計算機與數字工程,2012,40(2) :65-67.
    [11] 張月琴,劉翔,孫先洋. 一種改進的 BP 神經網絡算法與應用[J].計算機技術與發展,2012,22(8) :163-166.
    [12] 鄭瑞驍,張姝,肖先勇,等. 考慮溫度模糊化的多層長短時記憶神經網絡短期負荷預測[J].電力自動化設備,2020,40(10) :181-186.
    [13] 魏東,龔慶武,來文青,等. 基于卷積神經網絡的輸電線路區內外故障判斷及故障選相方法研究[J].中國電機工程學報,2016,36(S1) :21-28.
    [14] 周天春,楊麗君,廖瑞金,等. 基于局部放電因子向量和 BP 神經網絡的油紙絕緣老化狀況診斷[J].電工技術學報,2010,25(10) :18-23.

     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();