基于自組織競爭網絡與RPROP算法的線損計算研究
張艷,徐衛鋒
(國網上海市電力公司市南供電公司,上海 200233)
摘 要:為更好地發現高效的降損措施,并為科學地制定線損目標提供依據,提出了一種基于自組織競爭神經網絡的 RPROP 神經網絡的線損計算方法。RPROP 神經網絡確保了網絡在有限的訓練次數下能夠收斂,利用自組織競爭神經網絡對信息數據進行有效分類,提高了 RPROP 神經網絡的輸出精度。通過在 MATLAB 平臺進行仿真實驗,并與線性回歸算法、標準 BP 神經網絡算法,以及未分類的 RPROP 算法進行比較,驗證了該方法的有效性。
關鍵詞: 線性回歸算法;BP 神經網絡;RPROP 神經網絡;自組織競爭神經網絡;線損
中圖分類號:TM744 文獻標識碼:A 文章編號:1007-3175(2022)07-0031-04
The Research on Line Loss Calculation of RPROP Algorithm Based on
Self-Organizing Competitive Network
ZHANG Yan, XU Wei-feng
(State Grid Shanghai Shinan Electric Power Supply Company, Shanghai 200233, China)
Abstract: This paper proposed a line loss calculation based on the self-organizing competitive network of the RPROP neural network to find efficient loss reduction measures and provide the basis for scientifically formulating line loss targets.The RPROP neural network ensured that the network could converge under a limited number of training times. Moreover, it utilized a self-organizing competitive neural network to effectively classify informative data, which improved the output accuracy of the RPROP neural network.By doing simulation experiments on the MATLAB platform and comparing with linear regression algorithm, standard BP neural network algorithm, unclassified RPROP algorithm,it verified the effectiveness of the proposed method.
Key words: linear regression algorithm; BP neural network; RPROP neural network; self-organizing competitive neural network; line loss
參考文獻
[1] 李俊楠,閆利,張世林,等. 綜合線路率及線損波動分析[J]. 電力系統裝備,2020(15) :115-116.
[2] 張銀,張祥華,伏圣群,等. 中壓配電網極限線損計算方法研究[J] . 廣西科技大學學報, 2017,28(2) :67-73.
[3] 陳哲. 基于 BP 神經網絡的配網設備故障預測[D] .廣州:廣東工業大學,2017.
[4] 倪洋. 基于 BP 神經網絡的配網線損計算分析[D] .大連:大連理工大學,2018.
[5] 馬銳.人工神經網絡原理[M] . 北京:機械工業出版社,2010.
[6] 陳明.MATLAB 神經網絡原理與實例精解[M]. 北京:清華大學出版社,2013.
[7] RIEDMILLER M, BRAUN H.A direct adaptive method for faster back propagation learning:The RPROP algorithm[C]//IEEE International Conference on Neural Networks,1993.
[8] 朱凱,王正林. 精通 MATLAB 神經網絡[M]. 北京:電子工業出版社,2010.
[9] 張德豐.MATLAB 神經網絡應用設計[M].2 版. 北京:機械工業出版社,2012.