<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號: CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁 >> 文章檢索 >> 文章瀏覽排名

    基于相似日和CNN-LSTM的短期負荷預測

    來源:電工電氣發布時間:2022-08-29 14:29 瀏覽次數:288

    基于相似日和CNN-LSTM的短期負荷預測

    童占北1,鐘建偉1,李禎維2,吳建軍2,李家俊2
    (1 湖北民族大學 智能科學與工程學院,湖北 恩施 445000;
    2 國網湖北省電力有限公司恩施供電公司,湖北 恩施 445000)
     
        摘 要:為充分發掘歷史信息,解決氣象數據不足影響預測精度的問題,采用灰色關聯分析 (GRA) 選取天氣相似日和 CNN-LSTM 混合神經網絡的方法來預測電力負荷。利用 GRA 計算每日各氣象因素與日總負荷的灰色關聯度,再計算各日與典型日的相同氣象因素之間的歐氏距離,將各氣象因素的歐氏距離分別乘以對應因素的關聯度,并將同一天的結果累加,得到一個綜合得分。選取待預測日之前分數最低的 5 天作為相似日,將相似日各時刻的負荷數據輸入 CNN-LSTM 網絡中,預測出待預測日的負荷,通過與其他模型對比,驗證了該方法的有效性。
        關鍵詞: 灰色關聯分析;相似日;CNN-LSTM 混合神經網絡;短期負荷預測
        中圖分類號:TM715     文獻標識碼:A     文章編號:1007-3175(2022)08-0017-06
     
    Short-Term Load Forecasting Based on Grey Relational
    Analysis and CNN-LSTM
     
    TONG Zhan-bei1, ZHONG Jian-wei1, LI Zhen-wei2, WU Jian-jun2, LI Jia-jun2
    (1 College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China;
    2 Enshi Power Supply Company, State Grid Hubei Electric Power Co., Ltd, Enshi 445000, China)
     
        Abstract: This paper used grey relational analysis(GRA) to select days with similar weather conditions and explore more historical information.In addition, it employed the CNN-LSTM hybrid neural network method to predict power load and solve the problem of insufficient meteorological data affecting prediction accuracy. This research used GRA to calculate the grey relational grade between daily meteorological factors and overall load. In addition, it computed the Euclidean distance of the same meteorological factors between each day and the typical day. The Euclidean distance of each meteorological factor was multiplied by the relevancy of corresponding factors. The accumulation of the calculation results in the same day could obtain an overall score. This study took five days with the lowest score before predicted days as the similar days. It inputted load data into the CNN-LSTM network to forecast the load of prediction days. Compared with other models, the effectiveness of this method is verified.
        Key words: grey relational analysis; similar day; CNN-LSTM hybrid neural network; short-term load forecasting
     
    參考文獻
    [1] 梁智,孫國強,李虎成. 基于 VMD 與 PSO 優化深度信念網絡的短期負荷預測[J] . 電網技術,2018,42(2):598-606.
    [2] KIN J, CHO S, KO K, et al.Short-Term Electric Load Prediction Using Multiple Linear Regression Method[C]//2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids,2018.
    [3] LI Hong, ZHAO Yang, ZHANG Zizi, et al.Shortterm load forecasting based on the grid method and the time series fuzzy load forecasting method[C]//International Conference on Renewable Power Generation,2015.
    [4] 陳磊,張青云,向曉,等. 改進灰色預測模型在電力負荷預測中的應用[J] . 河北電力技術,2021,40(6):27-30.
    [5] SHARMA S, MAJUMDAR A, ELVIRA V, et al.Blind Kalman Filtering for Short-Term Load Forecasting[J].IEEE Transactions on Power Systems,2020,35(6):4916-4919.
    [6] 譚風雷,張軍,馬宏忠. 基于趨勢變化分段的電力負荷組合預測方法[J] . 華北電力大學學報,2020,47(2):17-24.
    [7] YANG Wangwang, SHI Jing, LI Shujian, et al.A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior[J].Applied Energy,2022,307(C) :S0306261921014665.
    [8] JALALI S M J, AHMADIAN S, KHOSRAVI A, et al.A Novel Evolutionary-Based Deep Convolutional Neural Network Model for Intelligent Load Forecasting[J].IEEE Transactions on Industrial Informatics,2021,PP(99) :1.
    [9] ZHU Fuyun, WU Guoqing.Load Forecasting of the Power System: An Investigation Based on the Method of Random Forest Regression[J].Energy Engineering,2021,118(6) :1703-1712.
    [10] LI Gen, LI Yunhua, ROOZITALAB Farzad.Midterm Load Forecasting: A Multistep Approach Based on Phase Space Reconstruction and Support Vector Machine[J].IEEE Systems Journal,2020,14(4) :4967-4977.
    [11] 鄧春紅,王蒙. 基于相似日和灰色理論的短期電力負荷預測研究[J] . 重慶工商大學學報( 自然科學版),2017,34(3):93-97.
    [12] 王瑞,孫憶楓,逯靜. 基于相似日和 RBF 神經網絡的短期電力負荷預測[J] . 制造業自動化,2021,43(4):24-29.
    [13] JANKOVI Z, SELAKOV A, BEKUT D, et al.Day similarity metric model for short-term load forecasting supported by PSO and artificial neural network[J].Electrical Engineering,2021,103(1) :2973-2988.
    [14] DING Jianmin, YUE Yunli, CHEN Jianhua, et al.Analysis of Factors Affecting Power Load Characteristics Based on Grey Relational Analysis Model [C]//2019 International Conference on Sensing , Diagnostics ,Prognostics, and Control(SDPC),2020.
    [15] 劉亞琿,趙倩. 基于聚類經驗模態分解的 CNN-LSTM 超短期電力負荷預測[J] . 電網技術,2021,45(11):4444-4451.
    [16] RAFI S H, MASOOD Nahid-Al, DEEBA S R, et al.A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network[J].IEEE Access,2021,9:32436-32448.
    [17] 劉可真,阮俊梟,趙現平,等. 基于麻雀搜索優化的 Attention-GRU 短期負荷預測方法[J]. 電力系統及其自動化學報,2022,34(4) :99-106.

     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();