<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號: CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁 >> 文章檢索 >> 文章瀏覽排名

    基于ReliefF-mRMR與IAO-SVM的變壓器故障診斷

    來源:電工電氣發布時間:2023-02-07 10:07 瀏覽次數:378

    基于ReliefF-mRMR與IAO-SVM的變壓器故障診斷

    張佳豪1,楊國華1,2,趙藝青1,張兆坤1,李志遠1
    (1 寧夏大學 物理與電子電氣工程學院,寧夏 銀川 750021;
    2 寧夏電力能源安全重點實驗室,寧夏 銀川 750004)
     
        摘 要:為進一步提高變壓器故障診斷準確率,提出一種基于 ReliefF-mRMR 與 IAO-SVM 結合的變壓器故障診斷模型。采用 ReliefF 和最大相關最小冗余 (mRMR) 算法對變壓器故障數據進行特征優選;引入混沌反向學習和自適應混合變異策略改進天鷹優化算法,并對最優特征集合和支持向量機 (SVM) 參數聯合尋優,構建最佳故障診斷模型;利用已有變壓器故障數據對所提模型仿真實驗,并與常用故障診斷模型灰狼算法支持向量機 (GWO-SVM)、天鷹優化算法支持向量機 (AO-SVM) 相比較, 準確率分別提高了 10.76% 和 6.15%,高達 95.38%,結果表明所提模型能有效提高變壓器故障診斷精度。
        關鍵詞: 變壓器;故障診斷;特征優選;改進天鷹優化算法;支持向量機
        中圖分類號:TM407     文獻標識碼:A     文章編號:1007-3175(2023)01-0001-07
     
    Fault Diagnosis Method of Transformer Based on ReliefF-mRMR and IAO-SVM
     
    ZHANG Jia-hao1, YANG Guo-hua1,2, ZHAO Yi-qing1, ZHANG Zhao-kun1, LI Zhi-yuan1
    (1 College of Physics and Electrical and Electronic Engineering, Ningxia University, Yinchuan 750021, China;
    2 Ningxia Key Laboratory of Power and Energy Security, Yinchuan 750004, China)
     
        Abstract: The paper is aimed at putting forward a transformer fault diagnosis model based on ReliefF-mRMR and IAO-SVM to further increase its accuracy. In order to build an optimal fault diagnosis model, the authors use ReliefF and mRMR for feature optimization of transformer fault data, combine chaotic backward learning and adaptive mixed mutation strategy to improve aquila optimizer, and make joint optimization of optimal feature set and support vector machine (SVM) parameters. By doing simulation experiment of the existing transformer fault data and comparing the optimal fault diagnosis model with gray wolf algorithm support vector machine (GWO-SVM) and aquila optimizer support vector machine (AO-SVM), it is found that the accuracy of the optimal fault diagnosis model rise to 95.38% with the growth rate of 10.76% and 6.15% respectively, verifying its high accuracy of transformer fault diagnosis.
        Key words: transformer; fault diagnosis; feature optimization; improved aquila optimizer; support vector machine
     
    參考文獻
    [1] 盛戈皞,錢勇,羅林根,等. 面向新型電力系統的電力設備運行維護關鍵技術及其應用展望[J] . 高電壓技術,2021,47(9):3072-3084.
    [2] 江秀臣,許永鵬,李曜丞,等. 新型電力系統背景下的輸變電數字化轉型[J] . 高電壓技術,2022,48(1):1-10.
    [3] 梁永亮,郭漢琮,薛永端. 基于特征氣體關聯特征的變壓器故障診斷方法[J] . 高電壓技術,2019,45(2):386-392.
    [4] 張丞鳴,謝菊芳,胡東,等. 基于 QPSO-SVM 與 DGA 五邊形解釋工具的變壓器故障診斷方法[J] . 高壓電器,2021,57(12):117-124.
    [5] 徐龍舞,張英,張倩,等. 基于正交實驗法改進的蝠鲼算法優化 BP 在變壓器故障診斷上的研究[J] .南方電網技術,2022,16(7):46-54.
    [6] WU Y H, SUN X B, ZHANG Y, et al.A Power Transformer Fault Diagnosis Method-Based Hybrid Improved Seagull Optimization Algorithm and Support Vector Machine[J].IEEE Access,2022,10:17268-17286.
    [7] 劉仲民,翟玉曉,張鑫,等. 基于 DBN-IFCM 的變壓器故障診斷方法[J] . 高電壓技術,2020,46(12):4258-4265.
    [8] YANG X H, CHEN W K, LI A Y, et al.BAPNN-based methods for power transformer fault diagnosis[J].Advanced Engineering Informatics,2019,39:178-185.
    [9] 謝國民,倪樂水,曹媛. 基于 VSRP 與 β-GWO-SVM 的變壓器故障辨識方法[J] . 高電壓技術,2021,47(10):3635-3641.
    [10] 蘇磊,陳璐,徐鵬,等. 基于深度信念網絡的變壓器運行狀態分析[J] . 高壓電器,2021,57(2):56-62.
    [11] 廖偉涵,郭創新,金宇,等. 基于四階段預處理與 GBDT 的油浸式變壓器故障診斷方法[J]. 電網技術,2019,43(6):2195-2203.
    [12] HUANG Z K,YANG C H,ZHOU X J, et al.A Hybrid Feature Selection Method Based on Binary State Transition Algorithm and ReliefF[J].IEEE Journal of Biomedical and Health Informatics,2019,23(5) :1888-1898.
    [13] PENG H C, LONG F H, DING C.Feature selection based on mutual information criteria of max-dependency , max-relevance , and min-redundancy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8) :1226-1238.
    [14] LAITH A, DALIA Y, MOHAMED A E, et al.Aquila Optimizer : A Novel Meta-Heuristic Optimization Algorithm[J] . Computers & Industrial Engineering,2021,157:107250.
    [15] 王雨虹,王志中,付華,等. 多策略改進麻雀算法與 BiLSTM 的變壓器故障診斷研究[J]. 儀器儀表學報,2022,43(3):87-97.
    [16] TANG A D , TANG S Q , HAN T , et al . A Modified Slime Mould Algorithm for Global Optimization[J].Computational Intelligence and Neuroscience,2021,2021:2298215.
    [17] 單亞峰,段金鳳,付華,等. 基于 SSA-AdaBoost-SVM 的變壓器故障診斷[J] . 控制工程,2022,29(2):280-286.
    [18] 尹金良. 基于相關向量機的油浸式電力變壓器故障診斷方法研究[D]. 北京:華北電力大學,2013.
    [19] 李春茂,周妺末,劉亞婕,等. 基于鄰域粗糙集與多核支持向量機的變壓器多級故障診斷[J] . 高電壓技術,2018,44(11):3474-3482.

     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();