<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號: CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁 >> 文章檢索 >> 往年索引

    電動汽車充電站短期負(fù)荷的神經(jīng)網(wǎng)絡(luò)預(yù)測模型

    來源:電工電氣發(fā)布時間:2023-05-28 09:28 瀏覽次數(shù):357

    電動汽車充電站短期負(fù)荷的神經(jīng)網(wǎng)絡(luò)預(yù)測模型

    喬維德1,喬淳2
    (1 無錫開放大學(xué) 科研與發(fā)展規(guī)劃處,江蘇 無錫 214011;
    2 錫山水務(wù)集團(tuán)有限公司,江蘇 無錫 214101)
     
        摘 要:為提高電動汽車充電站短期負(fù)荷預(yù)測精確度,以某電動汽車充電站的相關(guān)數(shù)據(jù)為依據(jù),分析了電動汽車充電站的負(fù)荷特性以及影響負(fù)荷變化的主要因素,并構(gòu)建了基于人工魚群-蛙跳算法優(yōu)化反向傳播 (BP) 神經(jīng)網(wǎng)絡(luò)的電動汽車充電站短期負(fù)荷預(yù)測模型。仿真算例結(jié)果表明,該模型預(yù)測優(yōu)勢明顯,預(yù)測速度快,預(yù)測精度高,適用于電動汽車充電站的短期負(fù)荷預(yù)測,為下一步工程實(shí)踐應(yīng)用提供了理論依據(jù)。
        關(guān)鍵詞: 電動汽車充電站;短期負(fù)荷預(yù)測;神經(jīng)網(wǎng)絡(luò)
        中圖分類號:U469.72 ;TM714     文獻(xiàn)標(biāo)識碼:A     文章編號:1007-3175(2023)05-0007-05
     
    Neural Network Forecasting Model for Short-Term Load of
    Electric Vehicle Charging Stations
     
    QIAO Wei-de1, QIAO Chun2
    (1 Scientific Research and Development Planning Office of Wuxi Open University, Wuxi 214011, China;
    2 Xishan Water Group Co., Ltd, Wuxi 214101, China)
     
        Abstract: In order to increase the short-term load forecasting accuracy of electric vehicle charging stations, the paper, according to the relevant data of a electric vehicle charging station, makes analysis of its load characteristics and main factors affecting load variation, and builds a short-term load forecasting model of electric vehicle charging stations based on the back propagation (BP) neural network optimized by artificial fish-frog leap algorithm. The simulation results show that this model has great advantages of fast forecasting speed and high forecasting accuracy. It not only suits for short-term load forecasting of electric vehicle charging stations, but also provides a theoretical basis for the next engineering practice.
        Key words: electric vehicle charging station; short-term load forecasting; neural network
     
    參考文獻(xiàn)
    [1] 喬維德. 電動汽車鋰電池荷電狀態(tài)的徑向基神經(jīng)網(wǎng)絡(luò)預(yù)測[J] . 黃岡職業(yè)技術(shù)學(xué)院學(xué)報,2021,23(5):120-123.
    [2] 王哲,代兵琪,李相棟. 基于 PSO-SNN 的電動汽車充電站短期負(fù)荷預(yù)測模型研究[J] . 電氣技術(shù),2016(1):46-50.
    [3] 喬維德. 基于人工魚群-蛙跳神經(jīng)網(wǎng)絡(luò)的變壓器故障診斷[J] . 常熟理工學(xué)院學(xué)報,2016,30(4):70-74.
    [4] 孫婉婉,楊樂. 基于遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的電動汽車負(fù)荷短期預(yù)測[J]. 電工電氣, 2019(9):18-21.
    [5] 常德政,任杰,趙建偉,等. 基于 RBF-NN 的電動汽車充電站短期負(fù)荷預(yù)測研究[J] . 青島大學(xué)學(xué)報(工程技術(shù)版),2014,29(4):44-48.

     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();