應用于智能電網故障檢測的關聯(lián)規(guī)則挖掘算法優(yōu)化
朱文灝1,2,郭其一1
(1 同濟大學 電子與信息工程學院,上海 201804;
2 上海施耐德低壓終端電器有限公司,上海 201109)
摘 要: 針對于目前故障檢測方法在智能電網應用中存在較大誤差的問題,介紹了一種基于貝葉斯網絡和關聯(lián)規(guī)則數(shù)據(jù)挖掘的算法模型,通過Hash 技術優(yōu)化Apriori 算法,對原數(shù)據(jù)挖掘,去除不期望的候選項集,并通過貝葉斯網絡訓練樣本,減少檢測誤差,最終得到電網故障檢測結果。仿真結果表明,這種基于貝葉斯網絡和關聯(lián)規(guī)則挖掘算法的故障檢測模型,比傳統(tǒng)算法在電網故障檢測方面更有效率,且檢測誤差大幅降低。
關鍵詞: 智能電網故障檢測;關聯(lián)規(guī)則挖掘;頻繁項集優(yōu)化;貝葉斯網絡
中圖分類號:TM743 文獻標識碼:A 文章編號:1007-3175(2015)03-0004-04
Optimization of Association Rules Mining Algorithm for Smart Grid Fault Detection
ZHU Wen-hao1,2, GUO Qi-yi1
(1 Department of Electrical Engineering, Tongji University, Shanghai 201804, China;
2 Schneider Shanghai Low Voltage Terminal Apparatus Co., Ltd, Shanghai 2011 09, China)
Abstract: Aiming at the problem that larger error always exists during the application of fault detection test method in smart grid, this paper introduced an algorithm model based on Bayesian network and association rule mining. With mining the original data and removing the undesired candidate, Apriori algorithm was optimized by Hash technology; also Bayesian network was introduced for sample training to decrease detection error, so as to finally obtain the result of power network fault detection. Simulation results show that compared with traditional algorithm, the proposed fault detection model, which is based on Bayesian network and association rules mining, is more efficient with lower detection error in power grid fault detection.
Key words: smart grid fault detection; association rules mining; frequent item set optimization; Bayesian network
參考文獻
[1] 杜敏杰,馬善釗,王建國,等.基于核密度估計的實時SVDD算法與電路故障檢測應用[J].計算機測量與控制,2014,22(4):1039-1041.
[2] 張哲軍.引入推理模型的大型電網設備的故障檢測方法[J].科技通報,2014,30(2):111-113.
[3] 周建萍,朱建萍,徐司聰.微網孤島運行時短路故障檢測的仿真研究[J].中國電力,2014,47(3):85-89.
[4] 杜華.基于關聯(lián)規(guī)則的船舶供電系統(tǒng)故障檢測方法研究[J].計算機測量與控制,2014,22(1):233-235.
[5] 張咪.一種遠端故障檢測方案的設計與實現(xiàn)[J].計算機技術與應用,2013,39(12):126-128.
[6] 張海濤,高錦宏,吳國新,等. 蟻群優(yōu)化算法在風電偏航故障檢測中的應用[J]. 可再生能源,2013,31(11):48-50.
[7] 原艷紅.大型煤炭機電設備的故障檢測方法研究[J].計算機仿真,2013,30(8):380-383.
[8] 鄭樹松,李紅梅.電動汽車PMSM驅動系統(tǒng)的故障檢測[J].微電機,2013,46(8):55-59.
[9] 王娟,張瑾.高壓電力計量系統(tǒng)故障診斷與應用研究[J].科學技術與工程,2013,13(19):5617-5620.
[10] 杜敏杰,蔡金燕. 基于樣本約簡的實時SVDD 算法與電路故障檢測應用[J]. 微電子學與計算機,2013,30(7):86-90.