(School of Mechanical and Electrical Engineering & Automation, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China)
Abstract: In view of the problem that voltagesag has a great impact on the frequency conversion speed regulation system in engineering,the BP neural network is used to predict the DC side voltage after voltagesag of low-voltage convertor, and the nonlinear mapping relationship of load power, DC side capacitor, depth of voltage dip, duration and the DC side voltage of the convertor is established. First, the simulation model was built based on MATLAB/Simulink, four parameters were adjusted for mass simulation, sufficient data samples were obtained for different types of voltagesag. Then, the BP neural network was established for prediction, the voltagesag tolerance of low-voltage convertor was evaluated by comparing the DC side voltage predicted and protecteed value. The results show that the BP neural network model has high prediction accuracy and can accurately predict the DC side voltage value, so as to judge the protection action of low-voltage convertor after voltage sag.
Key words: voltagesag; BP neural network; low-voltage convertor; tolerance
參考文獻
[1] 莫文雄,許中,馬智遠,等. 變頻調速系統的電壓暫降免疫度計算及關鍵參數設計[J] . 電力系統自動化,2018,42(18) :157-161.
[2] 蔣素瓊. 一種用于檢測電壓暫降的新方法[J] . 電氣技術,2016,17(11) :56-61.
[3] 李晨懿,汪坤,盧文清,等. 變頻器對不同類型電壓暫降的耐受特性研究[J] . 電測與儀表,2018,55(15) :1-7.
[4] 陶順,唐松浩,陳聰,等. 變頻調速器電壓暫降耐受特性試驗及量化方法研究Ⅰ :機理分析與試驗方法[J]. 電工技術學報,2019,34(6) :1273-1281.
[5] 徐永海,李晨懿,汪坤,等. 低壓變頻器對電網電壓暫降耐受特性及兼容性研究[J] . 電工技術學報,2019,34(10) :2216-2229.
[6] 龔博,趙建陽,劉會巧. 基于靜止無功發生器分相控制的電壓暫降治理技術[J] . 電氣技術,2020,21(9) :33-38.
[7] IEEE Industry Applications Society.Trial-Use Recommended Practice for Voltage Sag and Short Interruption Ride-Through Testing for End-Use Electrical Equipment Rated Less than 1 000 V :IEEE Std 1668—2014[S].New York :IEEE Industry Applications Society,2014 :15-16.
[8] 張志勇,張猛,陸金桂. 基于改進 BP 神經網絡的液壓支架前連桿疲勞壽命預測[J] . 煤礦機械,2023,44(2) :177-179.
[9] 周凱,郭倩雯,欒樂,等. 可調速驅動設備暫態電壓擾動耐受能力快速評估方法[J] . 中國測試,2020,46(7) :75-82.
[10] 肖鋒.BP 神經網絡在步進電機細分控制的應用[J].電氣技術,2015,16(10) :120-122.
[11] 王飛,鄭張麗,郭靜靜,等. 基于神經網絡的公路工程造價預測模型[J] . 河北工程大學學報(自然科學版),2014,31(4) :102-104.
[12] 陳明.MATLAB 神經網絡原理與實例精解[M]. 北京:清華大學出版社,2013.