<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號: CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁 >> 文章檢索 >> 文章瀏覽排名

    政府激勵機制下新能源技術發展三方演化博弈分析

    來源:電工電氣發布時間:2024-08-01 15:01 瀏覽次數:10

    政府激勵機制下新能源技術發展三方演化博弈分析

    周路遙,劉富州,袁博文,陸宇軒,吳天雄
    (國網江蘇省電力有限公司鹽城供電分公司,江蘇 鹽城 224000)
     
        摘 要:伴隨著參與電力市場的主體類型數量逐漸上升,經典的優化理論與常規博弈模型已經很難解決受多種因素影響的多主體行為決策模型。針對目前市場環境下新能源發電商與火力發電商的集中競價行為,建立了競爭型代理模式下的三主體演化博弈模型。以參與博弈的主體有限理性以及市場化環境下有限信息,通過理論推導出了各主體在不同階段、不同政策下的最優競爭策略,通過算例分析了發電商和政府部門的演化結果、策略應對以及其中影響決策的主要因素,驗證了演化博弈在市場背景下多主體最優策略分析中的有效性,并為發電側主體的行為和政府部門的政策提供了建議。
        關鍵詞: 發電競價;發電側;演化博弈;多群體策略均衡
        中圖分類號:F206 ;TM61     文獻標識碼:A     文章編號:1007-3175(2024)07-0001-10
     
    The Analysis of Tripartite Evolutionary Game of New Energy Technology
    Development Under the Government Incentive Mechanism
     
    ZHOU Lu-yao, LIU Fu-zhou, YUAN Bo-wen, LU Yu-xuan, WU Tian-xiong
    (State Grid Jiangsu Electric Power Co., Ltd. Yancheng Power Supply Company, Yancheng 224000, China)
     
        Abstract: With the gradual increase of the number of entities participating in the electricity market, it was difficult for classical optimization theory and classic game model to solve the multi-agent behavior decision-making model affected by multiple factors. In view of the centralized bidding behavior of new energy power generators and thermal power generators in the current market environment, a three-subject evolutionary game model under the competitive agency model was established. Based on the limited rationality of the subjects participating in the game and the limited information in the market-oriented environment, the optimal competition strategy of each subject in different stages and different policies were theoretically deduced. This paper analyzes the evolution results, strategic responses and the main factors affecting the decision-making of power generators and government departments through examples, it verifies the effectiveness of evolutionary game in the analysis of multi-agent optimal strategies in the market context, provides suggestions for the behavior of generation side and the policies of government departments.
        Key words: power generation bidding; generation side; evolutionary game; multi-group strategy equilibrium
     
    參考文獻
    [1] 國家能源局. 國家能源局綜合司關于開展跨省跨區電力交易與市場秩序專項監管工作的通知[R/OL] .(2023-10-27)[2024-03-16].http://zfxxgk.nea.gov.cn/2023-10/31/c_1310748175.htm.
    [2] 中華人民共和國國家發展和改革委員會. 國家能源局關于建立煤電容量電價機制的通知[R/OL].(2023-11-10)[2024-03-16].https://www.ndrc.gov.cn/xwdt/tzgg/202311/t20231110_1361899.html.
    [3] 國家能源局. 新型能源體系建設提速[R/OL] . (2024-01-12)[2024-03-16].http://www.nea.gov.cn/2024-01/12/c_1310759961.htm.
    [4] 程樂峰. 電力市場多群體策略博弈的長期演化穩定均衡理論研究[D]. 廣州:華南理工大學,2019.
    [5] NASH J F . Equilibrium Points in N-Person Games[J].Proceedings of the National Academy of Sciences,1950,36(1) :48-49.
    [6] 于丹,王斯一,張彩虹,等. 電廠和政府行為策略演化博弈與仿真研究——基于農林生物質與煤耦合發電產業發展視角[J]. 北京林業大學學報(社會科學版),2024,23(1) :62-70.
    [7] 盧強,陳來軍,梅生偉. 博弈論在電力系統中典型應用及若干展望[J] . 中國電機工程學報,2014,34(29) :5009-5017.
    [8] 王歌, 張奇, 李彥, 等. 區塊鏈共享模式下的分布式光伏擴散演化模擬[J] . 系統工程學報,2024,39(2) :189-199.
    [9] 閆麗梅,曾家威,徐建軍,等. 含電動汽車和光伏的配電網演化動態博弈調度策略[J] . 太陽能學報,2024,45(5) :316-323.
    [10] 許禮剛,劉榮福,陳磊,等. 前景理論視角下廢舊動力電池回收監管演化博弈分析[J]. 重慶理工大學學報(自然科學),2024,38(1) :290-297.
    [11] 程樂峰,余濤. 發電市場長期競價均衡自發形成過程中的一般多策略演化博弈決策行為研究[J]. 中國電機工程學報,2020,40(21) :6936-6955.
    [12] 楊輝,莫峻. 發電側企業群體間競價行為的隨機演化博弈[J]. 電網技術,2021,45(9) :3389-3397.
    [13] 彭春華,錢錕,閆俊麗. 新能源并網環境下發電側微分演化博弈競價策略[J] . 電網技術,2019,43(6) :2002-2009.
    [14] STOFT Steven.Power System Economics—Designing Markets for Electricity[M].New York :Wiley-IEEE Press,2002.

     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();