<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號(hào): CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁 >> 文章檢索 >> 最新索引

    基于SDP和2DLNMF的變壓器偏磁狀態(tài)識(shí)別方法

    來源:電工電氣發(fā)布時(shí)間:2024-12-02 09:02 瀏覽次數(shù):33

    基于SDP和2DLNMF的變壓器偏磁狀態(tài)識(shí)別方法

    葉帥,陳皖皖,王浩宇,趙義東
    (國網(wǎng)安徽省電力有限公司淮南供電公司,安徽 淮南 232000)
     
        摘 要:為了有效檢測(cè)變壓器直流偏磁狀態(tài),從多通道振動(dòng)信號(hào)融合的角度出發(fā),提出了一種基于對(duì)稱點(diǎn)模式(SDP)和二維局部非負(fù)矩陣分解(2DLNMF)的變壓器偏磁狀態(tài)識(shí)別方法。利用 SDP 算法將采集的多通道振動(dòng)信號(hào)融合成 SDP 圖像特征;然后應(yīng)用 2DLNMF 算法對(duì)其進(jìn)行了降維優(yōu)化,據(jù)此構(gòu)建了基于支持向量機(jī)(SVM)算法變壓器偏磁狀態(tài)識(shí)別模型。研究結(jié)果表明:基于 SDP-2DLNMF 的信息融合方法充分了展現(xiàn)不同信號(hào)間的特征差異,獲取的低維特征可有效反映變壓器直流偏磁程度,據(jù)此建立的 SVM 狀態(tài)識(shí)別模型具有較高的識(shí)別精度,為變壓器的狀態(tài)監(jiān)測(cè)提供了技術(shù)支撐。
        關(guān)鍵詞: 變壓器;直流偏磁;對(duì)稱點(diǎn)模式;二維局部非負(fù)矩陣分解;支持向量機(jī)
        中圖分類號(hào):TM411     文獻(xiàn)標(biāo)識(shí)碼:B     文章編號(hào):1007-3175(2024)11-0042-07
     
    Recognition Method of Transformer Magnetic Bias
    State Based on SDP and 2DLNMF
     
    YE Shuai, CHEN Wan-wan, WANG Hao-yu, ZHAO Yi-dong
    (State Grid Anhui Electric Power Company Co., Ltd. Huainan Power Supply Company, Huainan 232000, China)
     
        Abstract: In order to effectively detect the transformer DC magnetic bias state, this paper starts from the perspective of multi-channel information fusion, and proposes a new method for identifying the bias state of a transformer based on symmetrized dot pattern (SDP) and 2-dimensionlal local nonngeative matrix factorzization(2DLNMF). Firstly, SDP algorithm is used to fuse the multi-channel vibration signals into SDP image features. Then, the 2DLNMF algorithm was used to optimize its dimensionality reduction, according to which the transformer magnetic bias state recognition model based on the support vector machine (SVM) algorithm was built. The research results show that information fusion method based on the SDP-2DLNMF fully shows the characteristics of the differences between different signal, the obtained low-dimensional characteristics can effectively reflect the degree of DC magnetic bias of the transformer, and the SVM state recognition model established on this basis has high recognition accuracy, which provides technical support for transformer state monitoring.
        Key words: transformer; DC magnetic bias; symmetrized dot pattern; 2-dimensionlal local nonngeative matrix factorzization; support vector machine
     
    參考文獻(xiàn)
    [1] 舒印彪,張文亮. 特高壓輸電若干關(guān)鍵技術(shù)研究[J] .中國電機(jī)工程學(xué)報(bào),2007,27(31) :1-6.
    [2] 高沛,王豐華,蘇磊,等. 直流偏磁下電力變壓器的振動(dòng)特性[J]. 電網(wǎng)技術(shù),2014,38(6) :1536-1541.
    [3] 謝志成,錢海,林湘寧,等. 直流偏磁下變壓器運(yùn)行狀態(tài)量化評(píng)估方法[J] . 電力自動(dòng)化設(shè)備,2019,39(2) :216-223.
    [4] 張彬,徐建源,陳江波,等. 基于電力變壓器振動(dòng)信息的繞組形變?cè)\斷方法[J] . 高電壓技術(shù),2015,41(7) :2341-2349.
    [5] 黃春梅,馬宏忠,吳明明,等. 基于 CRP 和 RQA 的變壓器繞組壓緊狀態(tài)檢測(cè)[J] . 電力系統(tǒng)保護(hù)與控制,2018,46(7) :144-149.
    [6] 郭潔,陳祥獻(xiàn),黃海. 交叉遞歸圖在變壓器鐵芯壓緊力變化檢測(cè)中的應(yīng)用[J] . 高電壓技術(shù),2010,36(11) :2731-2738.
    [7] 楊毅,王豐華,段若晨,等. 基于自適應(yīng)篩選 EMD 和 CFDC 的變壓器繞組狀態(tài)檢測(cè)[J]. 振動(dòng)與沖擊,2017,36(19) :106-111.
    [8] 解穎,王豐華,傅正財(cái). 基于棧式自編碼器的變壓器機(jī)械故障診斷[J]. 高壓電器,2020,56(9) :46-53.
    [9] LI Yuchun, LIU Lianguang.The application of the wavelet packet to the study of vibration of transformer under DC magnetic bias[C]//2010 5th International Conference on Critical Infrastructure(CRIS), 2010 :1-4.
    [10] 郭潔,黃海,唐昕,等.500 kV 電力變壓器偏磁振動(dòng)分析[J]. 電網(wǎng)技術(shù),2012,36(3) :70-75.
    [11] 吳曉文,周衛(wèi)華,裴春明,等.500 kV 自耦變壓器直流偏磁振動(dòng)特征提取與模式識(shí)別方法研究[J]. 西安交通大學(xué)學(xué)報(bào),2018,52(4) :24-30.
    [12] LIU Xingmou, WU Jiaxin, LIN Haibo, et al.Research on DC bias analysis for transformer based on vibration Hilbert Huang transform and ground-state energy ratio method[J].International Journal of Electrical Power & Energy Systems,2019,109 :73-82.
    [13] XU Xiaogang, LIU Haixiao, ZHU Hao, et al.Fan fault diagnosis based on symmetrized dot pattern analysis and image matching[J].Journal of Sound and Vibration,2016,374 :297-311.
    [14] 王科俊,左春婷. 非負(fù)矩陣分解特征提取技術(shù)的研究進(jìn)展[J]. 計(jì)算機(jī)應(yīng)用研究,2014,31(4) :970-975.
    [15] LI Stan Z, HOU Xinwen.Learming spatially localized, parts-based representation Computer Vision and Pattemn Recognition[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattemn Recognition,2001 :120-129.
    [16] 許榕, 吳聰, 蔣士正, 等. 二維局部非負(fù)矩陣分解的路網(wǎng)態(tài)勢(shì)算法[J] . 上海交通大學(xué)學(xué)報(bào),2015,49(8) :1131-1136.
    [17] 戴棟,黃筱婷,代洲,等. 基于支持向量機(jī)的輸電線路覆冰回歸模型[J] . 高電壓技術(shù),2013,39(11) :2822-2828.
    [18] 劉方園,王水花,張煜東. 支持向量機(jī)模型與應(yīng)用綜述[J]. 計(jì)算機(jī)系統(tǒng)應(yīng)用,2018,27(4) :1-9.
    [19] 陳仕龍,曹蕊蕊,畢貴紅,等. 利用多分辨奇異譜熵和支持向量機(jī)的特高壓直流輸電線路區(qū)內(nèi)外故障識(shí)別方法[J]. 電網(wǎng)技術(shù),2015,39(4) :989-994.
    [20] 付旻,王煒,王昊,等. 多分類支持向量機(jī)在公交換乘識(shí)別中的應(yīng)用[J] . 哈爾濱工業(yè)大學(xué)學(xué)報(bào),2018,50(3) :26-32.
    [21] 楊毅,劉石,張楚,等. 基于振動(dòng)分布特征的電力變壓器繞組故障診斷[J]. 振動(dòng)與沖擊,2020,39(1) :199-208.
    [22] 張雪冰,饒柱石,塔娜,等. 變壓器油箱振動(dòng)功率流研究[J]. 振動(dòng)與沖擊,2009,28(5) :188-191.
    [23] 張凡, 汲勝昌, 師愉航, 等. 電力變壓器繞組振動(dòng)及傳播特性研究[J] . 中國電機(jī)工程學(xué)報(bào),2018,38(9) :2790-2798.

     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();