參考文獻(xiàn)
[1] 陶娟,鄒紅波,周冬. 基于提升人工神經(jīng)網(wǎng)絡(luò)的短期負(fù)荷預(yù)測模型[J]. 電工材料,2021(2) :53-56.
[2] ZHANG N, NIU M, WAN F, et al.Hazard prediction of water inrush in water-rich tunnels based on random forest algorithm[J].Applied Sciences,2024,14(2) :867.
[3] DONG J, WANG Z, WU J, et al.A novel runoff prediction model based on support vector machine and gate recurrent unit with secondary mode decomposition[J].Water Resources Management,2024,38(5) :1655-1674.
[4] 張曉燕,林鴻才,黃波,等. 基于最優(yōu)交集相似日的 EMD-SVR 短期負(fù)荷預(yù)測[J]. 海峽科學(xué),2023(7) :30-35.
[5] 邵必林,莊雪莉,曾卉玢. 基于 LSTM-XGBoost 和多模型算法的短期負(fù)荷預(yù)測[J] . 計(jì)算機(jī)時代,2023(12) :49-54.
[6] 孟德乾,袁建平,吳月超. 基于 VMD-IWOA-KELM 的短期電力負(fù)荷預(yù)測研究[J] . 科技創(chuàng)新與應(yīng)用,2023,13(33) :136-139.
[7] 余志成,孫皓月,張碧寧. 基于 ARIMA 和 SVR 的短期電力負(fù)荷預(yù)測[J] . 河北建筑工程學(xué)院學(xué)報(bào),2023,41(3) :189-196.
[8] 周思明,段金長,李穎杰,等. 一種改進(jìn)的 SVM 短期電力系統(tǒng)負(fù)荷預(yù)測方法[J] . 沈陽工業(yè)大學(xué)學(xué)報(bào),2023,45(6) :661-665.
[9] SINA A, KAUR D.Short Term Load Forecasting Model Based on Kernel-Support Vector Regression with Social Spider Optimization Algorithm[J].Journal of Electrical Engineering and Technology,2020,15(1) :393-402.
[10] FIGUEIRO C I, ABAIDE R A, NETO K N, et al.Bottom-Up Short-Term Load Forecasting Considering Macro-Region and Weighting by Meteorological Region [J] . Energies,2023,16(19) :6857.
[11] VRABLECOVA P, EZZEDDINE A B, ROZINAJOVA V, et al.Smart grid load forecasting using online support vector regression[J].Computers and Electrical Engineering,2018,65 :102-117.
[12] 樊浩研,劉楊,李璟. 基于 PCA-WPD 優(yōu)化的電流互感器故障檢測方法研究[J]. 粘接,2024,51(5) :193-196.
[13] 冷騰飛,蘇圣超. 基于子區(qū)域切分與 SSA-XGBoost 的室內(nèi)定位方法[J] . 傳感技術(shù)學(xué)報(bào),2024,37(5) :833-840.