<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號: CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁 >> 文章檢索 >> 文章瀏覽排名

    基于神經網絡綜合分析的變壓器油色譜在線監測系統

    來源:電工電氣發布時間:2016-03-15 15:15 瀏覽次數:805

    基于神經網絡綜合分析的變壓器油色譜在線監測系統 

    史晏廷1,楊波1,陳爾奎1,李錦川2,譚小艷1


    1 山東科技大學 信息與電氣工程學院,山東 青島 266590;
    2 東北電力大學 電氣工程學院,吉林 吉林 132012
     
     

    摘 要:油色譜在線監測是電力變壓器在線監測領域常用的方法之一。變壓器故障診斷的結果將直接作為變壓器是否需要檢修的決策依據,鑒于變壓器故障原因的復雜性,僅靠單一的故障診斷方法很難滿足故障診斷的要求,故將傳統故障診斷方法與BP神經網絡方法通過Borda模型相結合,以提高變壓器故障診斷的準確率,最后用C#語言設計開發了故障診斷系統。該系統改變了以往的定期試驗模式,實現了變壓器狀態在線監測和分析。
    關鍵詞:變壓器在線監測;故障診斷;BP神經網絡;Borda模型;C#語言
    中圖分類號:TM411 文獻標識碼:A 文章編號:1007-3175(2013)06-0045-05


    Online Monitoring System of Transformer Oil Chromatography Based on Neural Network Integrated Analysis 

    SHI Yan-ting1, YANG Bo1, CHEN Er-kui1, LI Jin-chuan2, TAN Xiao-yan1 
    1 College of Information and Electrical Engineering, Shandong University of Science and Technology, Qingdao 266590, China; 
    2 Electrical Engineering College, Northeast Dianli University, Jilin 132012, China
     
     

    Abstract: Oil chromatography monitoring is one of the commonly used methods in the online monitoring field of power transformers. The results of fault diagnosis for a transformer will provide a direct basis for determining whether the transformer needs an overhaul. Due to the complex reasons of transformer faults, it is difficult for a single diagnosis method to meet the requirements of fault diagnosis. In order to improve the accuracy of fault diagnosis, this paper combined the traditional fault diagnosis method with the back propagation (BP) neural network method by the Borda model. The fault diagnosis system developed by C# language improved the traditional mode of routine test and achieved online monitoring and analysis for the state of power transformers.
    Key words: transformer online monitoring; fault diagnosis; back propagation neural network; Borda model; C# language


    參考文獻
    [1] 王長善,張衛星.變壓器在線監測技術[J].電氣時代,2008(3):82-83.
    [2] 王昌長,李福祺,高勝友.電力設備的在線監測與故障診斷[M].北京:清華大學出版社,2006.
    [3] 陰昌華,王晨.變壓器油中溶解氣體在線監測技術的研究[J].科技情報開發與經濟,2007,17(1):171-172.
    [4] 王楠,律方成,李和明.OLAP技術在電氣設備在線監測數據處理中的應用[J].電力系統自動化,2004,28(3):71-73.
    [5] 歐意文.電力變壓器在線監測與綜合診斷系統研究與開發[D].西安:長安大學,2011.
    [6] 王曉霞,王濤.基于BP神經網絡的變壓器故障診斷[J].華東電力,2008,36(2):112-116.
    [7] 朱浪,王蕾,潘豐.基于BP神經網絡的變壓器故障診斷[J].江南大學學報:自然科學版,2012,11(3):262-266.
    [8] 楊廷方.變壓器在線監測與故障診斷新技術的研究[D].武漢:華中科技大學,2008.
     

    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();