采用改進波前自動生成算法的電器電場計算
朱傳運,石治中,崔江紅
河南平高電氣股份有限公司,河南 平頂山 467001
摘 要:如何簡化前處理,實現高質量網格自動生成是解決有限元數值求解精度及求解效率這一矛盾的關鍵。以波前推進法為基礎,給出一種二維三角形網格的改進波前自動生成算法。通過分類標識波前點,控制離散步長疏密,及最小角優先生成原則與網格光滑處理技術的應用,實現剖分網格的平滑過渡,保證剖分單元質量。通過對SF6 斷路器滅弧室的電場數值計算,證明了所提出算法具有良好的邊界網格質量及電場計算精度。
關鍵詞:有限元法;波前推進法;網格自動生成;區域分解
中圖分類號:TM154.1 文獻標識碼:A 文章編號:1007-3175(2014)06-0027-04
Electrical Apparatus Electrical Field Calculation with Automatic Generation Algorithm of Improved Advancing Front Technique
ZHU Chuan-yun, SHI Zhi-zhong, CUI Jiang-hong
Henan Pinggao Electric Co., Ltd, Pingdingshan 467001, China
Abstract: How to simplify pre-processing is the key to realize high quality grid automatic generation and to solve the very contradiction between finite element value solution accuracy and solution efficiency. On the basis of advancing front technique, this paper gave a kind of improved advancing front automatic generation algorithm of two dimensional triangular net. Advancing front points were identified according to their classification to control the density of discrete step length. Combined with the minimum angle optimizing generation principle and net grid smooth processing technique application, this method realized smooth transition of divided net grid to ensure divided element quality. The electrical field value calculation of SF6 circuit breaker arc extinguishing chamber proves that the raised algorithm is with fine boundary net grid quality and electrical field calculation accuracy.
Key words: finite element method; advancing front technique; grid automatic generation; zone dividing
參考文獻
[1] Mackerle J.Mesh Generation and Refinement for FEM and BEM[J].Finite Elementin Analysis and Design,1993,15(2):177-188.
[2] 關振群,宋超,顧元憲. 有限元網格生成方法研究新進展[J].計算機輔助設計與圖形學學報,2003,15(1):1-14.
[3] Lo S H.A New Mesh Generation Scheme for Arbitrary Planar Domains[J].Numerical Methods in Engineering,2005,21(8):1403-1426.
[4] Lohner R.Progress in Grid Generation via the Advancing Front Technique[J].Engineering with Computers,1996,12(3):186-210.
[5] 劉冬,曹云東,孫靜,等. 二維電磁場波前推進法網格生成研究[ J ] . 沈陽工業大學學報,2004,26(5):521-524.
[6] 張洪武,關振群,李云鵬,等. 有限元分析與CAE技術基礎[M].北京:清華大學出版社,2004.