基于特征分類算法的GIS故障診斷方法研究
張湛1,楊光2,黃志2,張峰2,張士文2
(1 中國電力工程顧問集團中南電力設計院, 湖北 武漢 430071; 2 上海交通大學 電子信息與電氣工程學院, 上海 200240)
摘 要:針對高壓斷路器操動機構故障監測問題,提出了一種基于核主成分分析和支持向量機的氣體絕緣開關故障檢測方法,利用核主成分分析對分( 合) 閘線圈電流波形的特征值進行降維,然后將降維后的特征值輸入多類分類SVM 進行故障診斷和分類。通過實際樣本的實驗,驗證了算法的準確性和可靠性,并通過參數討論,測算了最優的分類參數。
關鍵詞:故障檢測,特征分類;氣體絕緣金屬封閉開關;核主成分分析;支持向量機
中圖分類號:TM561 文獻標識碼:A 文章編號:1007-3175(2016)11-0016-05
Gas Insulated Switch Fault Diagnosis Method Research Based on
Characteristic Classification Algorithm
ZHANG Zhan1, YANG Guang2, HUANG Zhi2, ZHANG Feng2, ZHANG Shi-wen2
(1 Central Southern China Electric Power Design Institute of China Power Engineering Consulting Group, Wuhan 430071,China;
2 School of Electrical Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)
Abstract: In allusion to the fault monitoring problem of high voltage circuit breaker operating mechanism, this paper raised a kind of fault detection method for gas insulated switch (GIS) based on kernel principal component analysis (KPCA) and support vector machine (SVM). The KPCA algorithm was used to reduce dimension of eigenvalue of coil current waveform, which was input multi-classified SVM. The practical sample experiment verifies the correctness and reliability of the algorithm, and the discussion is proposed to calculate the optimal parameter.
Key words: failure detection; characteristic classification; gas insulated switch (GIS); kernel principal component analysis (KPCA); support
vector machine (SVM)
參考文獻
[1] 劉亞芳. 國內外高壓S F6 斷路器運行狀況及維修策略綜述[J]. 電力設備,2002,3(1):26-29.
[2] 李娟,焦邵華. 基于D S P 的高壓斷路器狀態在線監測裝置[J]. 電力自動化設備,2004,24(8):44-47.
[3] 張弛. 高壓斷路器在線監測與故障診斷系統研究[D]. 北京:北京交通大學,2007.
[4] 曹飛. 斷路器在線監測數據分析的研究與應用[D].杭州:浙江大學,2008.
[5] 汪濤. 基于小波分析的斷路器動特性在線監測系統的研究與設計[D]. 西安:西安電子科技大學,2010.
[6] 郭武,戴禮榮,王仁華. 采用主成分分析的特征映射[J]. 自動化學報,2008,34(8):876-879.
[7] SCH C, LAPTEV I, CAPUTO B.Recognizing Human Actions: A Local SVM Approach[C]// Proceedings of the Pattern Recognition, 17th International Conference on (ICPR'04)IEEE Computer Society,2004(3):32-36.
[8] RAKOTOMAMONJY A.Variable selection using SVM based criteria[J].Journal of Machine Learning Research,2003,3(7/8):1357-1370.
[9] CHERKASSKY V, MA Y.Practical selection of SVM parameters and noise estimation for SVM regression[J].Neural Networks the Official
Journal of the International Neural Network Society,2004,17(1):113-126.
[10] RAZI-KAZEMI A A, Vakilian M, Niayesh K, et al. Circuit-Breaker Automated Failure Tracking Based on Coil Current Signature[J].IEEE Transactions on Power Delivery,2014,29(1):283-290.
[11] NI J, ZHANG C, YANG S X.An adaptive approach based on KPCA and SVM for real-time fault diagnosis of HVCBs[J].IEEE Transactions on
Power Delivery,2011,26(3):1960-1971.