考慮風電接入的電力系統(tǒng)動態(tài)隨機環(huán)境/經(jīng)濟調度
王銳1,朱超2,張帥3
(1 國網(wǎng)江蘇省電力公司泰州供電公司,江蘇 泰州 225300;2 國網(wǎng)江蘇省電力公司檢修分公司,江蘇 南京 211102;
3 國網(wǎng)江蘇省電力公司無錫供電公司,江蘇 無錫 214000)
摘 要:考慮風電固有的隨機性、波動性和間歇性,兼顧環(huán)境污染和經(jīng)濟性的多優(yōu)化目標,針對不同時間斷面,構建風電接入后的電力系統(tǒng)動態(tài)隨機環(huán)境/經(jīng)濟調度模型。引入機會約束規(guī)劃理論,設計基于非劣排序的隨機多目標粒子群優(yōu)化算法,應用模糊集合理論和熵權法建立綜合最優(yōu)解的提取方法。算例分析驗證了該模型和算法的可行性和有效性。
關鍵詞:大規(guī)模風電;環(huán)境/經(jīng)濟調度;多目標優(yōu)化;機會約束規(guī)劃
中圖分類號:TM614;TM734 文獻標識碼:A 文章編號:1007-3175(2017)04-0010-07
Dynamic and Stochastic Environmental Economic Dispatch for Power Systems Integrated with Large-Scale Wind Power
WANG Rui1, ZHU Chao2, ZHANG Shuai3
(1 Taizhou Power Supply Company of Jiangsu Electric Power Co., Ltd , Taizhou 225300, China;
2 Jiangsu Electric Power Maintenance Branch Company, Nanjing 2111 02, China;
3 Wuxi Power Supply Company of Jiangsu Electric Power Co., Ltd, Wuxi 214000, China)
Abstract: Giving consideration to the randomness, volatility and intermittent, multi-optimization objective of environmental pollution and economy, and aiming at fracture surface at different time, this paper established a dynamic and stochastic environmental economic dispatch model for power system integrated with large-scale wind power. The chance constraint planning theory was introduced. This paper designed a superior multi-objective particle swarm optimization algorithm based on Pareto non-dominated sorting mechanism and used the fuzzy set theory and entropy weights to extract the comprehensive optimal solution. The calculated example analysis verifies the feasibility and validity of this model and its algorithm.
Key words: large-scale wind power; environmental economic dispatch; multi-objective optimization; chance-constrained programming
參考文獻
[1] 雷亞洲. 與風電并網(wǎng)相關的研究課題[J]. 電力系統(tǒng)自動化,2003,27(8):84-89.
[2] 張粒子,周娜,王楠. 大規(guī)模風電接入電力系統(tǒng)調度模式的經(jīng)濟性比較[J]. 電力系統(tǒng)自動化,2011,35(22):105-109.
[3] 吳棟梁,王揚,郭創(chuàng)新,等. 電力市場環(huán)境下考慮風電預測誤差的經(jīng)濟調度模型[J]. 電力系統(tǒng)自動化,2012,36(6):23-28.
[4] 任博強,彭鳴鴻,蔣傳文,等. 計及風電成本的電力系統(tǒng)短期經(jīng)濟調度建模[J]. 電力系統(tǒng)保護與控制,2010,38(14):67-72.
[5] HETZER J, YU D C, BHATTARAI K.An economic dispatch model incorporating wind power[J]. IEEE Transactions on Energy Conversion,2008,
23(2):603-611.
[6] 張昭遂,孫元章,李國杰,等. 計及風電功率不確定性的經(jīng)濟調度問題求解方法[J]. 電力系統(tǒng)自動化,2011,35(22):125-130.
[7] MIRANDA V, HANG P S.Economic dispatch model with fuzzy wind constraints and attitudes of dispatchers[J].IEEE Transactions on Power Systems,2005,20(4):2143-2145.
[8] WANG L, SINGH C.PSO-based multi-criteria economic dispatch considering wind power penetration subject to dispatcher’s attitude[C]//Proceeding of IEEE North American Power Symposium,2006:269-276.
[9] 陳海焱,陳金富,段獻忠. 含風電場電力系統(tǒng)經(jīng)濟調度的模糊建模及優(yōu)化算法[J]. 電力系統(tǒng)自動化,2006,30(2):22-26.
[10] 江岳文,陳沖,溫步瀛. 含風電場的電力系統(tǒng)機組組合問題隨機模擬粒子群算法[J]. 電工技術學報,2009,24(6):129-137.
[11] 孫元章,吳俊,李國杰. 基于風速預測和隨機規(guī)劃的含風電場電力系統(tǒng)動態(tài)經(jīng)濟調度[J]. 中國電機工程學報,2009,29(4):41-47.
[12] 趙俊華,文福拴,薛禹勝,等. 計及電動汽車和風電出力不確定性的隨機經(jīng)濟調度[J]. 電力系統(tǒng)自動化,2010,34(20):22-29.
[13] 田廓,曾鳴,鄢帆,等. 考慮環(huán)保成本和風電接入影響的動態(tài)經(jīng)濟調度模型[J]. 電網(wǎng)技術,2011,35(6):55-59.
[14] DUTTA P, SINHA A K.Environmental economic dispatch constrained by voltage stability using PSO[C]//IEEE Internayional Conference on Industrial Technology,2007:1879-1884.
[15] KING R T F A, RUGHOOPUTH H C S, DEB K.Stochastic evolutionary multiobjective environmental/economic dispatch[C]//IEEE Congress on Evolutionary Computation,2006:946-953.
[16] 劉盛松,邰能靈,侯志儉,等. 基于最優(yōu)潮流與模糊貼近度的電力系統(tǒng)環(huán)境保護研究[J]. 中國電機工程學報,2003,23(4):21-26.
[17] 彭春華,孫惠娟. 基于非劣排序微分進化的多目標優(yōu)化發(fā)電調度[J]. 中國電機工程學報,2009,29(34):71-76.
[18] 文瑛,元昌安. 改進的多目標粒子群優(yōu)化方法[J].計算機工程與設計,2010,31(12):2846-2848.
[19] ALVAREZ-BENITEZ J, EVERSON R, FIELDSEND J.A MOPSO algorithm based exclusively on pareto dominance concepts[C]//Third International Conference, Evolutionary Malti-Criterion Optimization,2005:459-473.
[20] 吳亞麗,徐麗青. 基于差分演化的改進多目標粒子群優(yōu)化算法[J]. 系統(tǒng)仿真學報,2011,23(10):2211-2215.
[21] 徐麗青,吳亞麗. 求解環(huán)境經(jīng)濟調度問題的多目標差分粒子群優(yōu)化算法[J]. 西安理工大學學報,2011,27(1):62-68.
[22] DEB K, PRATAP A, AGARWAL S, et al.A fast and elitist multiobjective genetic algorithm: NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.