多數(shù)據(jù)融合的燃?xì)?蒸汽機(jī)組設(shè)備故障預(yù)警系統(tǒng)
徐童,茅大鈞
(上海電力學(xué)院 自動化工程學(xué)院,上海 200090)
摘 要:研究了一種基于多數(shù)據(jù)融合的針對燃?xì)? 蒸汽機(jī)組設(shè)備的設(shè)備故障預(yù)警系統(tǒng),利用先進(jìn)的狀態(tài)監(jiān)視和診斷技術(shù),判斷設(shè)備的異常,預(yù)知設(shè)備的故障,并結(jié)合設(shè)備的健康狀態(tài)來安排檢修計劃,實施設(shè)備檢修。該系統(tǒng)根據(jù)提供的設(shè)備歷史運行數(shù)據(jù)和實時數(shù)據(jù),多種類型數(shù)據(jù)相融合,提出了不同于傳統(tǒng)監(jiān)測的動態(tài)預(yù)警帶,變事后分析為事前診斷,大大提高了設(shè)備運行的可靠性和經(jīng)濟(jì)性。
關(guān)鍵詞:燃?xì)? 蒸汽機(jī)組;多數(shù)據(jù)融合;監(jiān)測;動態(tài)預(yù)警帶;經(jīng)濟(jì)性
中圖分類號:TM611.31 文獻(xiàn)標(biāo)識碼:B 文章編號:1007-3175(2017)06-0040-04
Multi-Data Fusion Gas-Steam Turbine Equipment Fault Early Warning System
XU Tong, MAO Da-jun
(School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
Abstract: This paper researched on a kind of equipment fault early warning system aiming at the fuel gas steam turbine based on multi-data fusion. The advanced state monitoring and diagnosis technology was used to carry out abnormal judgement and to predict the equipment failures. Combined with the health state of equipment, the maintenance plan and implementation of equipment maintenance were arranged. According to the historical operation data and real-time data of the equipment, various types of data were fused. This paper proposed a dynamic warning system which was different from the traditional monitoring system and turned postmortem analysis into diagnose in advance, which improves the reliability and economy of the equipment operation.
Key words: fuel gas steam turbine; multi-data fusion; monitoring; dynamic early warning belt; economy
參考文獻(xiàn)
[1] 杜守印,李斌,胡鑫. 基于決策樹的數(shù)據(jù)融合技術(shù)在電主軸故障分析與預(yù)測中的應(yīng)用[J]. 天津科技,2016,43(10):15-17.
[2] 盧世成. 基于數(shù)據(jù)流的電網(wǎng)設(shè)備風(fēng)險識別與預(yù)警模型研究[D]. 北京:華北電力大學(xué),2016.
[3] 劉曉慧,周榮艷. 基于數(shù)據(jù)融合的汽車發(fā)動機(jī)在線監(jiān)測與故障預(yù)警系統(tǒng)[J]. 自動化與儀器儀表,2015(12):152-154.
[4] 金杉,崔文,金志剛. 正態(tài)分布的貝葉斯網(wǎng)絡(luò)火災(zāi)數(shù)據(jù)融合預(yù)警研究[J]. 計算機(jī)應(yīng)用研究,2016,33(5):1473-1476.
[5] 劉艷艷. 基于程序合約和數(shù)據(jù)流相結(jié)合的軟件故障預(yù)警方法[D]. 西安:西安電子科技大學(xué),2014.
[6] 王珊. 風(fēng)電軸承故障預(yù)警與診斷方法的研究[D].北京:華北電力大學(xué),2014.
[7] 畢小玉. 基于多源信息融合的礦井主通風(fēng)機(jī)電動機(jī)絕緣故障診斷系統(tǒng)的研制[D]. 太原:太原理工大學(xué),2013.
[8] 張頌. 鼎豐真食品質(zhì)量追溯系統(tǒng)設(shè)計與數(shù)據(jù)融合算法[D]. 長春:吉林大學(xué),2013.
[9] 牛立東. 基于數(shù)據(jù)挖掘法的礦井瓦斯聯(lián)動監(jiān)測[J].中國安全科學(xué)學(xué)報,2011,21(7):62-68.
[10] 蔡濤. 基于S F6 衍生物的電氣設(shè)備故障診斷與預(yù)警研究[D]. 武漢:武漢大學(xué),2011.
[11] 張國棟. 礦用高壓配電裝置狀態(tài)監(jiān)測與故障預(yù)警系統(tǒng)的研究[D]. 太原:太原理工大學(xué),2010.
[12] 李連杰,朱從喬. 模糊數(shù)據(jù)融合技術(shù)在柴油機(jī)狀態(tài)監(jiān)測中的應(yīng)用研究[J]. 船海工程,2006(5):33-35.