多數據融合的燃氣-蒸汽機組設備故障預警系統
徐童,茅大鈞
(上海電力學院 自動化工程學院,上海 200090)
摘 要:研究了一種基于多數據融合的針對燃氣- 蒸汽機組設備的設備故障預警系統,利用先進的狀態監視和診斷技術,判斷設備的異常,預知設備的故障,并結合設備的健康狀態來安排檢修計劃,實施設備檢修。該系統根據提供的設備歷史運行數據和實時數據,多種類型數據相融合,提出了不同于傳統監測的動態預警帶,變事后分析為事前診斷,大大提高了設備運行的可靠性和經濟性。
關鍵詞:燃氣- 蒸汽機組;多數據融合;監測;動態預警帶;經濟性
中圖分類號:TM611.31 文獻標識碼:B 文章編號:1007-3175(2017)06-0040-04
Multi-Data Fusion Gas-Steam Turbine Equipment Fault Early Warning System
XU Tong, MAO Da-jun
(School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
Abstract: This paper researched on a kind of equipment fault early warning system aiming at the fuel gas steam turbine based on multi-data fusion. The advanced state monitoring and diagnosis technology was used to carry out abnormal judgement and to predict the equipment failures. Combined with the health state of equipment, the maintenance plan and implementation of equipment maintenance were arranged. According to the historical operation data and real-time data of the equipment, various types of data were fused. This paper proposed a dynamic warning system which was different from the traditional monitoring system and turned postmortem analysis into diagnose in advance, which improves the reliability and economy of the equipment operation.
Key words: fuel gas steam turbine; multi-data fusion; monitoring; dynamic early warning belt; economy
參考文獻
[1] 杜守印,李斌,胡鑫. 基于決策樹的數據融合技術在電主軸故障分析與預測中的應用[J]. 天津科技,2016,43(10):15-17.
[2] 盧世成. 基于數據流的電網設備風險識別與預警模型研究[D]. 北京:華北電力大學,2016.
[3] 劉曉慧,周榮艷. 基于數據融合的汽車發動機在線監測與故障預警系統[J]. 自動化與儀器儀表,2015(12):152-154.
[4] 金杉,崔文,金志剛. 正態分布的貝葉斯網絡火災數據融合預警研究[J]. 計算機應用研究,2016,33(5):1473-1476.
[5] 劉艷艷. 基于程序合約和數據流相結合的軟件故障預警方法[D]. 西安:西安電子科技大學,2014.
[6] 王珊. 風電軸承故障預警與診斷方法的研究[D].北京:華北電力大學,2014.
[7] 畢小玉. 基于多源信息融合的礦井主通風機電動機絕緣故障診斷系統的研制[D]. 太原:太原理工大學,2013.
[8] 張頌. 鼎豐真食品質量追溯系統設計與數據融合算法[D]. 長春:吉林大學,2013.
[9] 牛立東. 基于數據挖掘法的礦井瓦斯聯動監測[J].中國安全科學學報,2011,21(7):62-68.
[10] 蔡濤. 基于S F6 衍生物的電氣設備故障診斷與預警研究[D]. 武漢:武漢大學,2011.
[11] 張國棟. 礦用高壓配電裝置狀態監測與故障預警系統的研究[D]. 太原:太原理工大學,2010.
[12] 李連杰,朱從喬. 模糊數據融合技術在柴油機狀態監測中的應用研究[J]. 船海工程,2006(5):33-35.