變電站空間磁場能量收集用磁電型集能技術研究
李棟
(國網浙江杭州市余杭區供電公司,浙江 杭州 311100)
摘 要:提出了一種可用于變電站空間磁場能量收集的磁電型集能轉換技術,該技術基于Terfenol-D磁致伸縮合金和PZT-5H 壓電陶瓷制備而成的層狀磁電復合材料,可實現空間50 Hz 工頻交變磁場能量到電能的轉換。闡述了能量收集單元基本結構和工作原理,并設計了基于LTC3105 芯片的能量收集管理電路。實驗結果表明,在10、30、60 μT 的50 Hz 有效磁場激勵下,復合材料輸出電壓峰值分別可達0.33、1.26、2.49 V,針對30 μT 的50 Hz 空間交變磁場,該電路可在180 s 內將1 μF 儲能電容充電至4.1 V,這部分電能可瞬間釋放以驅動后端負載工作。
關鍵詞:能量收集;磁電復合材料;管理電路;無線傳感網
中圖分類號:TM154 文獻標識碼:A 文章編號:1007-3175(2017)06-0010-06
Study on Magnetoelectric Energy Conversion Technique Used for Space Magnetic Energy Harvesting in Substation
LI Dong
(State Grid Yuhang Power Supply Company, Hangzhou 3111 00, China)
Abstract: This paper presented a kind of magnetoelectric energy conversion technique used for space magnetic energy harvesting in substation. This technique was based on magnetoelectric (ME) laminate composite consisting of Terfenol-D magnetostrictive alloy and PZT-5H piezoelectric ceramics, which could realize the electric energy conversion from the space power-frequency (50 Hz) alternating magnetic field energy. This paper expounded the basic structure and operating principle of energy harvesting element and designed the energy harvesting power management circuit based on the chip LTC3105. Experimental results indicated that the output voltage was 0.33, 1.26, 2.49 V while the device was excited by 10, 30, 60 μT magnetic field. The 1 μF storage capacitors can be charged to 4.1 V after 180 s charging when the external magnetic induction intensity is 30 μT at a frequency of 50 Hz, which means that this part energy can be released instantly to drive the rear-end load working.
Key words: energy harvesting; magnetoelectric composite material; power management circuit; wireless sensor network
參考文獻
[1] 余貽鑫,欒文鵬. 智能電網[J]. 電網與清潔能源,2009,25(1):7-11.
[2] 魏齊巍. 無線傳感網絡三維定位在變電站中的應用與研究 [D]. 北京:華北電力大學,2015.
[3] 張強,孫雨耕,楊挺,等. 無線傳感器網絡在智能電網中的應用[J]. 中國電力,2010,43(6):31-36.
[4] 畢建剛,張濤,王峰,等. 基于無線傳感網絡的變電站分布式智能在線監測技術[J]. 電網與清潔能源,2012,28(11):52-55.
[5] 趙爭鳴,王旭東. 電磁能量收集技術現狀及發展趨勢[J]. 電工技術學報,2015,30(13):1-11.
[6] 鄒亮,黃金鑫,劉夢琦,等. 智能電網用空間電能集能轉換器[J]. 電力自動化設備,2015,35(6):159-165.
[7] 余義斌,余江,王貴,等. 傳感器節點環境能量的收集方法[J]. 廣東海洋大學學報,2007,27(6):93-96.
[8] 黃金鑫. 基于空間電磁能的無線傳感器自供能技術研究[D]. 濟南:山東大學,2012.
[9] 徐祿文,李永明,劉昌盛,等. 重慶地區500 k V變電站內工頻電磁場分析[J]. 電網技術,2008,32(2):66-70.
[10] 孫濤,萬保權.500 kV 變電站電磁環境參數測量[J].高電壓技術,2006,32(6):51-55.
[11] ROUNDY S, OTIS B P, CHEE Y H, et al.A 1.9 GHz RF Transmit Beacon Using Environmentally Scavenged Energy[C]//IEEE International Symposium on Low Power Electronics and Devices,2003.
[12] 劉盼剛,文玉梅,李平,等. 一種磁電自供電無線傳感器電源管理電路研究[J]. 傳感技術學報,2008,21(8):1427-1431.
[13] 李衍川,江和. 大電流下的電磁能量收集技術研究[J]. 電氣開關,2013,51(4):52-55.
[14] 王黎明,李海東,陳昌龍,等. 新型高壓輸電線路低下限死區大功率在線取能裝置[J]. 高電壓技術,2014,40(2):344-352.
[15] 曾東鑫. 能量收集技術在電氣中的應用研究[J].電氣開關,2014,52(3):86-89.
[16] 李淑英,王博文,周嚴,等. Terfenol-D/PZT/Terfenol-D 層狀復合磁電傳感器磁電效應[J]. 電工技術學報,2010,25(5):14-19.
[17] DONG S X, LI J F, VIEHLAND D.Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite:theory[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2003,50(10):1253-1261.