<dd id="mimiw"><samp id="mimiw"></samp></dd>

<address id="mimiw"><nav id="mimiw"><delect id="mimiw"></delect></nav></address>

    Suzhou Electric Appliance Research Institute
    期刊號: CN32-1800/TM| ISSN1007-3175

    Article retrieval

    文章檢索

    首頁 >> 文章檢索 >> 文章瀏覽排名

    基于數據驅動的發電設備在線預警研究

    來源:電工電氣發布時間:2017-07-20 09:20 瀏覽次數:9
    基于數據驅動的發電設備在線預警研究
     
    黃一楓,茅大鈞
    (上海電力學院 自動化工程學院,上海 200090)
     
        摘 要:針對發電設備故障頻發的情況,基于現場實時數據建立設備正常的運行狀態模型并結合PI實時數據庫構建了發電機組及關鍵設備的在線預警系統,對所采集的數據進行處理、分析、預測,來判斷設備的運行狀態并幫助運行人員確認設備是否需要檢修。通過電廠實際運用表明,該系統大幅提高了設備運行的安全水平和效率,降低了運行維護成本。
        關鍵詞:數據驅動;在線預警;發電設備
        中圖分類號:TM621.3;TP277     文獻標識碼:A     文章編號:1007-3175(2017)07-0015-05
     
    Research on Online Early Warning of Power Generating Equipment Based on Data Driven
     
    HUANG Yi-feng, MAO Da-jun
    (College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
     
        Abstract: In allusion to the circumstance of power generating equipment faults taking place frequently, the normal operational state model was established based on the site real-time data, and combined with the PI real-time database, the online early warning system of generator set and key equipment was constructed to carry out disposal, analysis and prediction to judge the equipment operating state and to help the operator determine whether to overhaul the equipment. The practical application of power plant shows that this system drastically improves the safety level and efficiency of equipment operation and reduces the operating maintenance cost.
        Key words: data driven; online early warning; power generating equipment
     
    參考文獻
    [1] 陳世和. 智能電廠的核心技術與理念[C]// 國家智能制造論壇,2016.
    [2] 張晉賓,周四維,陸星羽. 智能電廠概念、架構、功能及實施[J]. 中國儀器儀表,2017(4):33-39.
    [3] 鐘陽. 基于數據統計分析的變槳系統故障預警方法[D]. 北京:華北電力大學,2015.
    [4] 趙洪山,連莎莎,邵玲. 基于模型的風電機組變槳距系統故障檢測[J]. 電網技術,2015,39(2):440-444.
    [5] YANG T S, CHEN B, ZHANG H L, et al.State Trend Prediction of Spacecraft Based on BP Neural Network[C]//International Conference on Measurement,2013,2:809-812.
    [6] HUANG Y H, ZHOU X X.Knowledge model for electric power big data based on ontology and semantic web[J].CSEE Journal of Power and Energy Systems,2015,1(1):19-27.
    [7] ANGELI C, CHATZINIKOLAOU A.On-line fault detection techniques for technical systems:a survey[J].International Journal of Computer Science & Applications,2004,1(1):12-30.
    [8] 徐波,韓學山,李業勇,等. 電力設備機會維修決策模型[J]. 中國電機工程學報,2016,36(23):6379-6388.
    [9] 李玉杰. 城郊煤礦機電設備維修管理現狀分析與提升對策[D]. 南昌:南昌大學,2016.
    [10] 富雙進. 電站風機故障預警系統的研究[D]. 保定:華北電力大學,2015.
    [11] 王韜. 基于P I 數據庫的風電場實時監控系統應用研究[J]. 電氣自動化,2016(6):35-37.
    [12] 蔡曉潔,楊小柏.PI 實時數據庫在信息化系統中的應用[J]. 自動化技術與應用,2016,35(7):161-165.
    [13] 郭艷平,顏文俊,包哲靜. 風力發電機組在線故障預警與診斷一體化系統設計與應用[J]. 電力系統自動化,2010,34(16):83-86.
    亚洲无码av成人在线,亚洲影院AV无码一区二区,亚洲无码第二页,成人无码AV网站在线观看不卡 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();